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Abstract

EIP-1559 is a proposal to make several tightly coupled additions to Ethereum’s transaction
fee mechanism, including variable-size blocks and a burned base fee that rises and falls with
demand. This report assesses the game-theoretic strengths and weaknesses of the proposal and
explores some alternative designs.
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1 TL;DR

1.1 A Brief Description of EIP-1559

In the Ethereum protocol, the transaction fee mechanism is the component that determines, for
every transaction added to the Ethereum blockchain, the price paid by its creator. Since its
inception, Ethereum’s transaction fee mechanism has been a first-price auction: Each transaction
comes equipped with a bid, corresponding to the gas limit times the gas price, which is transferred
from its creator to the miner of the block that includes it.
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EIP-1559 proposes a major change to Ethereum’s transaction fee mechanism. Central to the
design is a base fee, which plays the role of a reserve price and is meant to match supply and
demand. Every transaction included in a block must pay that block’s base fee (per unit of gas),
and this payment is burnt rather than transferred to the block’s miner. Blocks are allowed to grow
as large as double a target block size; for example, with a target of 12.5M gas, the maximum block
size would be 25M gas. The base fee is adjusted after every block, with larger-than-target blocks
increasing it and smaller-than-target blocks decreasing it. Users seeking special treatment, such as
immediate inclusion in a period of rapidly increasing demand or a specific position within a block,
can supplement the base fee with a transaction tip that is transferred directly to the miner of the
block that it includes it.

1.2 Ten Key Takeaways

The following list serves as an executive summary for busy readers as well as a road map for those
wanting to dig deeper.

1. No transaction fee mechanism, EIP-1559 or otherwise, is likely to substantially decrease
average transaction fees; persistently high transaction fees is a scalability problem, not a
mechanism design problem. (See Section 3.2.1 for details.)

2. EIP-1559 should decrease the variance in transaction fees and the delays experienced by some
users through the flexibility of variable-size blocks. (Section 3.2.2)

3. EIP-1559 should improve the user experience through easy fee estimation, in the form of an
“obvious optimal bid,” outside of periods of rapidly increasing demand. (Section 6.3)

4. The short-term incentives for miners to carry out the protocol as intended are as strong under
EIP-1559 as with first-price auctions. (Sections 6.2 and 6.4)

5. The game-theoretic impediments to double-spend attacks, censorship attacks, denial-of-service
attacks, and long-term revenue-maximizing strategies such as base fee manipulation appear
as strong under EIP-1559 as with first-price auctions. (Section 7.5)

6. EIP-1559 should at least modestly decrease the rate of ETH inflation through the burning of
transaction fees. (Section 9.1)

7. The seemingly orthogonal goals of easy fee estimation and fee burning are inextricably linked
through the threat of off-chain agreements. (Sections 8.1–8.2)

8. Alternative designs include paying base fee revenues forward to miners of future blocks rather
than burning them; and replacing variable user-specified tips by a fixed hard-coded tip. (Sec-
tions 8.3 and 8.5)

9. EIP-1559’s base fee update rule is somewhat arbitrary and should be adjusted over time.
(Section 8.6)

10. Variable-size blocks enable a new (but expensive) attack vector: overwhelm the network with
a sequence of maximum-size blocks. (Sections 8.6.5–8.6.6)
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1.3 Organization of Report

Section 2 reviews Ethereum’s current transaction fee mechanism and provides a detailed description
of the changes proposed in EIP-1559. Section 3 considers the market for computation on the
Ethereum blockchain and the basic forces of supply and demand at work. Section 4 formalizes
the concepts of a “good user experience” and “easy fee estimation” via posted-price mechanisms.
Section 5 defines several desirable game-theoretic guarantees at the time scale of a single block,
and Section 6 delineates the extent to which the transaction fee mechanism proposed in EIP-
1559 satisfies them. Section 7 investigates the possibility of collusion by miners over long time
scales. Section 8 spells out the fatal flaws with some natural alternative designs and identifies
worthy directions for further design experimentation. Section 9 covers additional benefits of the
mechanism proposed in EIP-1559, along with a short discussion of EIP-2593 (the “escalator”).
Section 10 concludes.

Sections 2–4, 7, and 9–10 are relatively non-technical and meant for a general audience. Sec-
tions 5–6 and 8 are more mathematically intense and aimed at readers who have at least a passing
familiarity with mechanism design theory (see e.g. [54] for the relevant background).1

2 Transaction Fee Mechanisms in Ethereum: Present and Future

This section reviews the economically salient properties of Ethereum transactions (Section 2.1),
the status quo of a first-price transaction fee mechanism (Section 2.2), the nuts and bolts of the
new transaction fee mechanism proposed in EIP-1559 (Section 2.3), and the intuition behind the
proposal (Section 2.4).

2.1 Transactions in Ethereum

The Ethereum blockchain, through its Ethereum virtual machine (EVM), maintains state (such as
account balances) and carries out instructions that change this state (such as transfers of the native
currency, called ether (ETH)). A transaction specifies a sequence of instructions to be executed by
the EVM. The creator of a transaction is responsible for specifying, among other fields, a gas limit
and a gas price for the transaction. The gas limit is a measure of the cost (in computation, storage,
and so on) imposed on the Ethereum blockchain by the transaction. The gas price specifies how
much the transaction creator is willing to pay (in ETH) per unit of gas. For example, the most
basic type of transaction (a simple transfer) requires 21,000 units of gas; more complex transactions
require more gas. Typical gas prices reflect the current demand for EVM computation and have
varied over time by orders of magnitude; readers wishing to keep a concrete gas price in mind could
use, for example, 100 gwei (where one gwei is 10−9 ETH). The total amount that the creator of a
transaction offers to pay for its execution is then the gas limit times the gas price:

amount paid := gas limit× gas price. (1)

For example, for a 21,000-gas transaction with a gas price of 100 gwei, the corresponding payment
would be 2.1× 10−3 ETH (or 1.26 USD at an exchange rate of 600 USD/ETH).

A block is an ordered sequence of transactions and associated metadata (such as a reference to
the predecessor block). There is a cap on the total gas consumed by the transactions of a block,

1Other economic analyses of EIP-1559 include [8, 30, 50, 51, 59].
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which we call the maximum block size. The maximum block size has increased over time and is
currently 12.5M gas, enough for roughly 600 of the simplest transactions. Blocks are created and
added to the blockchain by miners. Each miner maintains a mempool of outstanding transactions
and collects a subset of them into a block. To add a block to the blockchain, a miner provides
a proof-of-work in the form of a solution to a computationally difficult cryptopuzzle; the puzzle
difficulty is adjusted over time to maintain a target rate of block creation (roughly one block per 13
seconds). Importantly, the miner of a block has dictatorial control over which outstanding transac-
tions are included and their ordering within the block. Transactions are considered confirmed once
they are included in a block that is added to the blockchain. The current state of the EVM is then
the result of executing all the confirmed transactions, in the order they appear in the blockchain.2

The transaction fee mechanism is the part of the protocol that determines the amount that a
creator of a confirmed transaction pays, and to whom that payment is directed.

2.2 First-Price Auctions

Ethereum’s transaction fee mechanism is and always has been a first-price auction [15].3

First-Price Auctions

1. Who pays what? The creator of a confirmed transaction pays the specified gas
limit times the specified gas price (as in (1)).

2. Who gets the payment? The entire payment is transferred to the miner of the
block that includes the transaction.4

A user submitting a transaction is sure to pay either the amount in (1) (if the transaction is
confirmed) or 0 (otherwise). A miner who mines a block is sure to receive as revenue the amount
in (1) from each of the transactions it chooses to include. Accordingly, many miners pack blocks
up to the maximum block size, greedily prioritizing the outstanding transactions with the highest
gas prices.5,6

2.3 EIP-1559: The Nuts and Bolts

2.3.1 Burning a History-Dependent Base Fee

EIP-1559, following Buterin [16, 17, 18], proposes a mechanism that makes several tightly coupled
changes to the status quo.

2Technically, a longest-chain rule is used to resolve forks (that is, two or more blocks claiming a common prede-
cessor). The confirmed transactions are then defined as those in the blocks that are well ensconced in the longest
chain (that is, already extended by sufficiently many subsequent blocks).

3First-price auctions are also used in Bitcoin [47].
4We will ignore details concerning transactions that run out of gas or complete with unused gas.
5Technically, because different transactions have different gas limits, selecting the revenue-maximizing set of

transactions is a knapsack problem (see e.g. [55]). The minor distinction between optimal and greedy knapsack
solutions is not important for this report.

6We use the word “greedy” without judgment—“greedy algorithm” is a standard term for a heuristic that is based
on a sequence of myopic decisions.
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EIP-1559: Key Ideas (1–3 of 8)

1. Each block has a protocol-computed reserve price (per unit of gas) called the
base fee. Paying the base fee is a prerequisite for inclusion in a block.7

2. The base fee is a function of the preceding blocks only, and does not depend
on the transactions included in the current block.

3. All revenues from the base fee are burned—that is, permanently removed from
the circulating supply of ETH.

Removing ETH from the supply increases the value of every ether still in circulation. Fee-burning
can therefore be viewed as a lump-sum refund to ETH holders (à la stock buybacks).

The second point is underspecified; how, exactly, is the base fee derived from the preceding
blocks? Intuitively, increases and decreases in demand should put upward and downward pressure
on the base fee, respectively.8 But the blockchain records only the confirmed transactions, not the
transactions that were priced out. If miners publish a sequence of full (12.5M gas) blocks, how can
the protocol distinguish whether the current base fee is too low or exactly right?

2.3.2 Variable-Size Blocks

The next key idea is to relax the constraint that every block has size at most 12.5M gas and instead
require only that the average block size is at most 12.5M gas.9 The mechanism in EIP-1559 then
uses past block sizes as an on-chain measure of demand, with big blocks (more than 12.5M gas)
and small blocks (less than 12.5M gas) signaling increasing and decreasing demand, respectively.10

Some finite maximum block size is still needed to control network congestion; the current EIP-1559
spec [20] proposes using twice the average block size.

EIP-1559: Key Ideas (continued)

4. Double the maximum block size (e.g., from 12.5M gas to 25M gas), with the
old maximum (e.g., 12.5M gas) serving as the target block size.

5. Adjust the base fee upward or downward whenever the size of the latest block
is bigger or smaller than the target block size, respectively.

The specific adjustment rule proposed in the EIP-1559 spec [20] computes the base fee rcur for the
current block from the base fee rpred and size spred of the predecessor block using the following

7Technically, a miner can also include a transaction unwilling to pay the full base fee, but it must then dip into
its block reward to make up the difference. We ignore this detail in this report.

8In the economics literature, such demand-dependent price adjustment is called “tâtonnement” (French for “grop-
ing”).

9More generally, EIP-1559 is parameterized by a target block size, which is adjusted by miners over time (like the
maximum block size is now). For concreteness, throughout this report we assume a target block size of 12.5M gas,
the current maximum block size.

10The flexibility provided by variable block sizes can also reduce the variance in equilibrium transaction fees and
the delays experienced by some users; see Section 3.2.

6



formula, where starget denotes the target block size:11

rcur := rpred ·
(

1 +
1

8
·
spred − starget

starget

)
. (2)

For example, the base fee increases by 12.5% after a maximum-size block (i.e., double the target
size) and decreases by 12.5% after an empty block. A maximum-size block followed by an empty
block (or vice versa) leaves the base fee at 9

8 ·
7
8 = 63

64 ≈ 98.4% of its prior value.12

If the base fee is burned rather than given to miners, why should miners bother to include any
transactions in their blocks at all? Also, what happens when there are lots of transactions (more
than 25M gas worth) willing to pay the current base fee?

2.3.3 Tips

The transaction fee mechanism proposed in EIP-1559 addresses the preceding two questions by
allowing the creator of a transaction to specify a tip, to be paid above and beyond the base fee,
which is transferred to the miner of the block that includes the transaction (as in a first-price
auction). Small tips should be sufficient to incentivize a miner to include a transaction during a
period of stable demand, when there is room in the current block for all the outstanding transactions
that are willing to pay the base fee. Large tips can be used to encourage special treatment of a
transaction, such as a specific positioning within a block, or the immediate inclusion in a block in
the midst of a sudden demand spike.

EIP-1559: Key Ideas (continued)

6. Rather than a single gas price, a transaction now includes a tip and a fee cap.
A transaction will be included in a block only if its fee cap is at least the
block’s base fee.

7. Who pays what? If a transaction with tip δ, fee cap c, and gas limit g is included
in a block with base fee r, the transaction creator pays g ·min{r+ δ, c} ETH.

8. Who gets the payment? Revenue from the base fee (that is, g · r) is burned
and the remainder (g ·min{δ, c− r}) is transferred to the miner of the block.

For example, consider a block with base fee 100 (in gwei per unit of gas). If the block’s miner
includes a transaction with tip 4 and fee cap 200, the creator of that transaction will pay 104 gwei
per unit of gas (100 of which is burned, 4 of which goes to the miner). An included transaction
with tip 10 and fee cap 105 would pay 105 gwei per unit of gas (100 of which is burned, 5 of which
goes to the miner).

A user submitting a transaction with tip δ and fee cap c is sure to pay at most c gwei per unit
of gas, and will pay less whenever the current base fee is small (i.e., less than c − δ). A miner
who mines a block is sure to receive all the revenue from the tips of the transactions it chooses to
include. Accordingly, one might expect a typical miner to include all the transactions with fee cap
greater than the base fee. If the total gas consumed by such transactions exceeds the maximum

11For simplicity, we ignore numerical details such as rounding the base fee to an integer.
12See also Table 1 in Section 3.2.2 for a more complex example of this update rule in action, Monnot [43] for

detailed simulations, and Filecoin [4] for a recent deployment.
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block size of 25M gas, one might expect the miner to pack its block full, greedily prioritizing the
outstanding transactions with the highest tips.

2.4 An Informal Argument for EIP-1559

The number of new ideas in EIP-1559 can be overwhelming. Why so many changes at once? Does
one of the changes necessitate the rest? We next outline one narrative of why EIP-1559 might have
to look more or less the way that it does, taking as given the goal of making fee estimation far
easier for users than in the status quo. The remainder of this report will interrogate this narrative
mathematically and explore some alternative designs.

Why EIP-1559 Looks the Way That It Does (Informal Argument)

1. First-price auctions are challenging for users to reason about because a user’s
optimal gas price depends on the gas prices offered by other users at the same
time.

2. Other common auction designs in which the prices charged depend on the set
of included transactions, such as second-price (a.k.a. Vickrey) auctions, can
be easily manipulated by miners through fake transactions.

3. Simple fee estimation, in which users are not forced to reason about other
users’ behavior, therefore seems to require a base fee—a price that is set inde-
pendently of the transactions included in the current block.

4. The ideal base fee would result in blocks filled with the highest-value transac-
tions. Demand changes over time, so the base fee must respond in kind.

5. The base fee revenues of a block must be burned or otherwise withheld from
the block’s miner, as otherwise the miner could collude with users off-chain to
costlessly simulate a first-price auction.

6. Because demand is not recorded on-chain, an on-chain proxy such as variable
block sizes must be used to adjust the base fee.

7. Tips are required to disincentivize miners from publishing empty blocks.

8. Tips should be specified by users rather than hard-coded into the protocol
so that high-value transactions can be identified and accommodated during a
sudden demand spike.

9. Burning any portion of the tips would drive the tip market off-chain, and thus
tips may as well be transferred entirely to a block’s miner.

3 The Market for Ethereum Transactions

This section steps away from the discussion of specific mechanisms and focuses instead the basic
forces of supply and demand at work in the Ethereum blockchain. Section 3.1 defines a “market-
clearing outcome” and posits it as the ideal outcome of a transaction fee mechanism. Section 3.2
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Figure 1: An example linear demand curve, with b = 30M and a = 150K. For example, there is a
demand of 30M gas at a gas price of 0; zero demand at a gas price of 200 gwei; and a demand of
12.5M gas at a gas price of 1162

3 gwei.

emphasizes that no mechanism can guarantee low transaction fees during periods in which the
demand for EVM computation significantly outstrips its supply, and clarifies EIP-1559’s likely
effect on high transaction fees.

3.1 Market-Clearing Prices and Outcomes

The 12.5M gas available in an Ethereum block is a scarce resource, and in a perfect world it
should be allocated to the transactions that derive the most value from it. We can make this idea
precise using a demand curve, which is a decreasing function that specifies the total amount of
gas demanded by users at a given gas price.13 For example, a linear demand curve has the form
D(p) = max{0, b − ap}, where p denotes the gas price and a, b ≥ 0 are nonnegative constants
(Figure 1).

The market-clearing price is then the price at which the total amount of gas demanded equals
the available supply (i.e., 12.5M gas). For example, in Figure 1, the market clearing price is 1162

3
gwei. If the demand at price 0 is less than the supply, we define the market-clearing price as 0.

The market-clearing price is the ideal gas price for a block. For suppose such a price p∗ fell
magically from the sky and became common knowledge to all users, with the understanding that all
confirmed transactions in the current block will pay p∗ per unit of gas. In the resulting outcome—
the market-clearing outcome—users with maximum willingness to pay at least p∗ per unit of gas
will opt to have their transactions included, while those with a lower willingness to pay opt out.
The end result? The supply of 12.5M gas will be fully utilized (because p∗ is a market-clearing
price), and moreover will be allocated precisely to the highest-value transactions (those willing to

13For simplicity of analysis, throughout this report we assume that demand is exogenous and independent of the
choice of or actions by a transaction fee mechanism. Houy [34] and Rizun [52] use a similar formalism to reason
about blockchain transaction fee markets. Richer models of demand, with pending transactions excluded from one
block persisting to the next, are studied by Monnot [43, 45] in the context of EIP-1559 simulations and by Easley et
al. [25] and Huberman et al. [35] to carry out an economic analysis of Bitcoin’s transaction fee mechanism.
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pay a gas price of at least p∗).14 Put differently, the market-clearing outcome maximizes the value
of the current block, subject to the supply constraint of 12.5M gas. For this reason, we adopt the
market-clearing outcome as the most desirable one for a transaction fee mechanism.

Ideal Outcome of a Transaction Fee Mechanism

Every block is fully utilized by the highest-value transactions, with all transactions
paying a gas price equal to the market-clearing price.

Both the status quo and EIP-1559 transaction fee mechanisms can be viewed as striving for this
ideal, market-clearing outcome. In first-price auctions, users are expected to estimate what the
current market-clearing price might be and bid accordingly. In the EIP-1559 mechanism, the
protocol continually adjusts the base fee in search of the market-clearing price.

Remark 3.1 (Revenue as a Necessary Evil) The purpose of the market-clearing price is to
differentiate high-value and low-value transactions, so that the scarce resource that is an Ethereum
block can be allocated in the most valuable way. Revenue is generated in the market-clearing
outcome (provided the supply constraint is binding), but only as a side effect in the service of
economic efficiency. The revenue-maximizing price is generally higher than the market-clearing
price, and it plays an important role in the discussion in Section 7 of possible attacks by colluding
miners.

Remark 3.2 (Non-Zero Marginal Costs) The preceding definition of a market-clearing out-
come assumes that the marginal cost to a miner of including an additional transaction in its block
is 0 (or +∞, if including the transaction would violate the cap of 12.5M gas). In reality, every
transaction imposes a small marginal cost on the miner; for example, one factor is that the proba-
bility that a block is orphaned from the main chain (i.e., the “uncle rate”) increases with the block
size [24].

If the overall marginal cost to a miner is µ gwei per unit of gas, then µ plays the role of 0 in
the more general definitions of market-clearing prices and outcomes.15 That is, if the demand at
price µ is at most the supply of 12.5M gas, the market-clearing price is µ; in the corresponding
outcome, all transactions willing to pay a gas price of at least µ are included in the block.

3.2 Will EIP-1559 Lower Transaction Fees?

The Ethereum community is justifiably concerned about overly high transaction fees crowding out
all but the most lucrative uses of the Ethereum blockchain (e.g., DeFi arbitrage opportunities).
No transaction fee mechanism can be a panacea to this problem. This section clarifies what effects
on transaction fees should and should not be expected from the adoption of the transaction fee
mechanism proposed in EIP-1559.

3.2.1 The Problem of High Market-Clearing Prices

First, whatever the mechanism, real transaction fees cannot be expected to drop significantly
below the market-clearing price during a period of relatively stable demand. With fees below that

14Or if the supply constraint is not binding (and hence p∗ = 0), all transactions are included.
15Alternatively, µ is the minimum compensation per unit of gas that a miner is willing to accept for including a

transaction.
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price, demand for gas would exceed supply, resulting in some lower-value transactions replacing
higher-value transactions. For example, with the demand curve in Figure 1, if typical fees dropped
to 100 gwei per unit of gas, the demand would be 15M gas. The 2.5M gas worth of excluded
transactions will inevitably include some for which the creator’s willingness to pay is at least the
market-clearing price of 1162

3 gwei. Such users should be expected to push up transaction fees and
guarantee inclusion of their transactions, either on-chain through the transaction fee mechanism
(e.g., by increasing a transaction’s gas price in a first-price auction), or off-chain through a side
agreement with a miner.

But what if the market-clearing price is already unacceptably high? The only ways to decrease
the market-clearing price are to increase supply or decrease demand (Figure 2)—actions that are
generally outside the purview of mechanism design.

Scalability vs. Mechanism Design

Lowering the market-clearing price by increasing supply or decreasing demand is
fundamentally a scalability problem, not a mechanism design problem.

For example, typical layer-1 scaling solutions like sharding, in which different parts of the blockchain
operate in parallel, increase transaction throughput and therefore decrease the market-clearing
price. Typical layer-2 scaling solutions like payment channels and rollups, which effectively move
some transactions off-chain, decrease demand for EVM computation and likewise decrease the
market-clearing price. Looking toward the near future, good scaling solutions will be crucial for
keeping transaction fees in check and more generally for encouraging the growth of the Ethereum
network.
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Figure 2: In the example in Figure 1, doubling the supply (shown in (a)) or halving the demand
(shown in (b)) cuts the market-clearing price from 1162

3 gwei to 331
3 gwei.

3.2.2 Two Potential Benefits of EIP-1559

The transaction fee mechanism proposed in EIP-1559 has the potential to partially mitigate high
transaction fees in two different ways. First, in a period of relatively stable demand, users can
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Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7 Period 8

Demand Low High High High High High High Low

M-C Price (12.5M) 33.33 116.67 116.67 116.67 116.67 116.67 116.67 33.33

EIP-1559 Base Fee 33.33 33.33 37.5 41.95 46.65 51.55 56.59 61.69

EIP-1559 Block Size 12.5M 25M 24.38M 23.71M 23M 22.27M 21.51M 10.37M

Table 1: An example of the EIP-1559 base fee adjustment rule in action. “Low” demand means the
demand curve D(p) = 15000000 − 75000p shown in Figure 2(b); “high” means the demand curve
D(p) = 30000000− 150000p shown in Figure 1. (Here “demand” means the total gas consumed by
all pending transactions that have a fee cap of p or more.) The second row shows the market-clearing
price for each demand curve when the supply is fixed at 12.5M gas. The third and fourth rows
show the joint evolution of the base fee and block size under the EIP-1559 mechanism, assuming
that the base fee matches the market-clearing price in period 1 and that all users submit negligible
tips.

adopt the base fee as a good known-in-advance proxy for the market-clearing price; this should
lead to less guesswork and consequent overpayment than in today’s first-price auctions. See also
the discussion in Section 4.1.

Second, in a period of volatile demand, the mechanism proposed in EIP-1559 can reduce the
variance in transaction fees experienced by users by exploiting variable block sizes—in effect, bor-
rowing capacity from the near future to use in a time of need. This flexibility in block sizes can
reduce the maximum transaction fee paid during the period (as well as the delay experienced by
some users).

Example 3.3 (Trajectory of EIP-1559) Consider the trajectory of the EIP-1559 mechanism
that is detailed in Table 1 and depicted in Figure 3. For this example, we assume that tips are
negligible and that a transaction is included in a block if and only if its fee cap is at least the current
base fee. Period 1 represents the end of a long era of stable demand, during which the base fee
converged to the market-clearing price for the target block size (12.5M gas). Demand doubles for
the next six periods. With a fixed supply of 12.5M gas, the market-clearing price jumps suddenly
from 331

3 to 1162
3 after period 1, and back to 331

3 after period 7. In the EIP-1559 mechanism, the
base fee—the mechanism’s guess at the current market-clearing price for the target block size—
increases slowly but surely, with larger-than-target blocks absorbing the excess demand along the
way. Once demand returns to its original level, blocks will have size smaller than the target as the
mechanism’s base fee slowly but surely decreases to the new market-clearing price. In this example,
the maximum base fee of 61.69 (in period 8) is only about 53% of the maximum market-clearing
price with a fixed block size of 12.5M gas (1162

3 , in periods 2–7).

4 The Purpose of EIP-1559: Easy Fee Estimation

4.1 The Problem of Fee Estimation

With or without EIP-1559, transaction fees will be high whenever the demand for EVM computation
far exceeds its supply (Section 3.2). So what’s the point of the proposal? To make transaction
fees more predictable and thereby make the fee estimation problem—the problem of choosing the
optimal gas price for a transaction—as straightforward as possible.
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Figure 3: For the example detailed in Table 1, a comparison of the price and block size under
the status quo and under EIP-1559. In the subsequent periods, the base fee and block size under
EIP-1559 gradually return to 331

3 gwei and 12.5M gas, respectively.

Ethereum users appear to overpay regularly for EVM computation, offering gas prices that are
significantly larger than the market-clearing price [3]. Part of the problem may be attributable to
poor fee estimation algorithms in wallets, which could conceivably improve over time (see e.g. [39,
48], in the similar context of Bitcoin). But part of the problem is fundamental to first-price auctions,
and addressing it necessitates a major change in the transaction fee mechanism.16

EIP-1559: Improving the User Experience with Easy Fee Estimation

This report assumes that the primary purpose of EIP-1559 is to improve the “user
experience (UX)” of Ethereum users, and to do so specifically by making the fee
estimation problem as easy as possible.

EIP-1559 also offers a number of other benefits (see Section 9.1), which are treated in this report
as happy accidents—byproducts of the proposed UX improvements.17

4.2 Auctions vs. Posted-Price Mechanisms

To what extent does EIP-1559 achieve its goal of a “better UX”? “User experience” is a vague
term, and it must be defined mathematically before this question can be answered.

Definition 5.21 presents our formalization of “good UX,” and the intuition for it is simple:
Shopping on Amazon is a lot easier than buying a house in a competitive real estate market. On
Amazon, there’s no need to be strategic or second-guess yourself; you’re either willing to pay the
listed price for the listed product, or you’re not. The outcome is economically efficient in that every

16Bidding in a first-price auction has long been known to be a hard problem; see e.g. [22].
17This viewpoint appears consistent with the original motivation for EIP-1559. Buterin [19] writes: “Our goal

is to discourage the development of complex miner strategies and complex transaction sender strategies in general,
including both complex client-side calculations and economic modeling as well as various forms of collusion.”
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user who buys a product has a higher willingness to pay for it than every user who doesn’t buy the
product.

When pursuing a house and competing with other potential buyers, you must think carefully
about what price to offer to the seller. And no matter how smart you are, you might regret your
offer in hindsight—either because you underbid and were outbid at a price you would have been
willing to pay, or because you overbid and paid more than you needed to. The house need not be
sold to the potential buyer willing to pay the most (if that buyer shades their bid too aggressively),
which is a loss in economic efficiency.

Bidding in Ethereum’s first-price auctions is like buying a house. Estimating the optimal
gas price for a transaction requires making educated guesses about the gas prices chosen for the
competing transactions. From a user’s perspective, any bid may end up looking too high or too
low in hindsight. From a societal perspective, lower-value transactions that bid aggressively may
displace higher-value transactions that do not.

Could we redesign Ethereum’s transaction fee mechanism so that setting a transaction’s gas
price is more like shopping on Amazon? Ideal would be a posted-price mechanism, meaning a
mechanism that offers each user a take-it-or-leave-it gas price for inclusion in the next block. We’ll
see in Section 6.3 that the transaction fee mechanism proposed in EIP-1559 acts like a posted-price
mechanism except when there is a large and sudden increase in demand (Theorem 6.8).

5 Incentive-Compatible Transaction Fee Mechanisms

This section formalizes three desirable game-theoretic guarantees for a transaction fee mechanism.
First, miners should be incentivized to carry out the mechanism as intended, and strongly disin-
centivized from including fake transactions (Section 5.3). Second, the optimal gas price to specify
should be obvious to the creator of a transaction (Section 5.4). Finally, there should be no way
for miners and users to collude and strictly increase their utility by moving payments off-chain
(Section 5.5). Sections 5.1 and 5.2 set up the notation and language necessary to formally state
these three definitions.

This and the next section focus on incentives for miners and users at the time scale of a single
block, and on two important types of attacks that can be carried out at this time scale (the insertion
of fake transactions, and off-chain agreements between miners and users). Section 7 treats incentive
issues and attacks that manifest over longer time scales.

5.1 The Basic Model

On the supply side, let G denote the maximum size of a block in gas (e.g., 12.5M gas in the
status quo or 25M gas under EIP-1559), and µ ≥ 0 the marginal cost of gas to a miner (as in
Remark 3.2).18 For simplicity, we assume that µ is the same for all miners and common knowledge
among users.19 On the demand side, let M denote the set of transactions in the mempool at the
time of the current block’s creation.

We associate three parameters with each transaction t ∈M :

18Equivalently, µ is the minimum gas price that a profit-maximizing miner is willing to accept in exchange for
transaction inclusion when the maximum block size is not a binding constraint. The formal definition of a “profit-
maximizing miner” is given in Definition 5.13.

19Calculations by Buterin [1] suggest that µ is, at this time of writing, on the order of 0.4–3.3 gwei. In a proof-of-
stake blockchain such as ETH 2.0, the parameter µ is likely to be even smaller.
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• a gas limit gt in gas;

• a value vt in gwei per unit of gas;

• a bid bt in gwei per unit of gas.

The gas limit is the amount of gas required to carry out the transaction. The value is the maximum
gas price the transaction’s creator would be willing to pay for its execution in the current block.20

The bid corresponds to the gas price that the creator actually offers to pay, which in general
can be less (or more) than the value. With a first-price auction, the bid corresponds to the gas
price specified for a transaction. In the transaction fee mechanism proposed in EIP-1559, the bid
corresponds to the minimum of the fee cap and the sum of the base fee and the tip (min{r + δ, c}
in the notation of Section 2.3). We view the gas limit and value as immutable properties of a
transaction; the bid, by contrast, is under control of the transaction’s creator. The gas limit and
bid of a confirmed transaction are recorded on-chain; the value of a transaction is known solely to
its creator.

5.2 Allocation, Payment, and Burning Rules

A transaction fee mechanism decides which transactions should be included in the current block,
how much the creators of those transaction have to pay, and to whom their payment is directed.
These decisions are formalized by three functions: an allocation rule, a payment rule, and a burning
rule.

5.2.1 Allocation Rules

We use B1, B2, . . . , Bk−1 to denote the sequence of blocks in the current longest chain (with B1 the
genesis block and Bk−1 the most recent block) and M the pending transactions in the mempool.
Generally, bold type (like x) will indicate a vector and regular type (like xt) one of its components.

Definition 5.1 (Allocation Rule) An allocation rule is a vector-valued function x from the on-
chain history B1, B2, . . . , Bk−1 and mempool M to a 0-1 value xt(B1, B2, . . . , Bk−1,M) for each
pending transaction t ∈M .

A value of 1 for xt(B1, B2, . . . , Bk−1,M) indicates transaction t’s inclusion in the current block Bk;
a value of 0 indicates its exclusion. We sometimes write Bk = x(B1, B2, . . . , Bk−1,M), with the
understanding that Bk is the set of transactions t for which xt(B1, B2, . . . , Bk−1,M) = 1.

We consider only feasible allocation rules, meaning allocation rules that respect the maximum
block size G.

Definition 5.2 (Feasible Allocation Rule) An allocation rule x is feasible if, for every possible
history B1, B2, . . . , Bk−1 and mempool M ,∑

t∈M
gt · xt(B1, B2, . . . , Bk−1,M) ≤ G. (3)

20We assume that the value is independent of the position in the block, ignoring e.g. front-running bots aiming to
secure the first position in a block (see [23, 53]).
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We call a set T of transactions feasible if they can all be packed in a single block:
∑

t∈T gt ≤ G.

Remark 5.3 (Miners Control Allocations) While a transaction fee mechanism is generally
designed with a specific allocation rule in mind, it is important to remember that a miner ultimately
has dictatorial control over the block it creates.

Example 5.4 (First-Price Auction Allocation Rule) The (intended) allocation rule xf in a
first-price auction is to include a feasible subset of outstanding transactions that maximizes the sum
of the gas-weighted bids, less the gas costs. That is, the xft ’s are assigned 0-1 values to maximize∑

t∈M
xft (B1, B2, . . . , Bk−1,M) · (bt − µ) · gt, (4)

subject to (3).

5.2.2 Payment and Burning Rules

The payment rule specifies the revenue earned by the miner from included transactions.

Definition 5.5 (Payment Rule) A payment rule is a function p from the current on-chain his-
tory B1, B2, . . . , Bk−1 and transactions Bk included in the current block to a nonnegative number
pt(B1, B2, . . . , Bk−1, Bk) for each included transaction t ∈ Bk.

The value of pt(B1, B2, . . . , Bk−1, Bk) indicates the payment from the creator of an included trans-
action t ∈ Bk to the miner of the block Bk (in ETH, per unit of gas).

For example, in a first-price auction, a winner always pays its bid (per unit of gas), no matter
what the blockchain history and other included transactions.

Example 5.6 (First-Price Auction Payment Rule) In a first-price auction,

pft (B1, B2, . . . , Bk−1, Bk) = bt

for all B1, B2, . . . , Bk and t ∈ Bk.

Finally, the burning rule specifies the amount of ETH burned—or equivalently, refunded to
ETH holders—for each of the included transactions.

Definition 5.7 (Burning Rule) A burning rule is a function q from the current on-chain his-
tory B1, B2, . . . , Bk−1 and transactions Bk included in the current block to a nonnegative number
qt(B1, B2, . . . , Bk−1, Bk) for each included transaction t ∈ Bk.

The value of qt(B1, B2, . . . , Bk−1, Bk) indicates the amount of ETH burned (per unit of gas) by the
creator of an included transaction t ∈ Bk.

Example 5.8 (First-Price Auction Burning Rule) Status quo first-price auctions burn no
fees, so

qft (B1, B2, . . . , Bk−1, Bk) = 0

for all B1, B2, . . . , Bk and t ∈ Bk.
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Remark 5.9 (The Protocol Controls Payments and Burns) A miner does not control the
payment or burning rule, except inasmuch as it controls the allocation, meaning the transactions
included in Bk. Given a choice of allocation, the on-chain payments and fee burns are completely
specified by the protocol. (Miners might seek out off-chain payments, however; see Section 5.5.)

Remark 5.10 (Mempool-Dependence) The allocation rule x depends on the mempool M be-
cause a miner can base its allocation decision on the entire set of outstanding transactions. Payment
and burning rules must be computable from the on-chain information B1, B2, . . . , Bk, and in par-
ticular cannot depend on outstanding transactions of M excluded from the current block Bk.

5.2.3 Transaction Fee Mechanisms

Formally, a transaction fee mechanism is specified by its allocation, payment, and burning rules.

Definition 5.11 (Transaction Fee Mechanism (TFM)) A transaction fee mechanism (TFM)
is a triple (x,p,q) in which x is a feasible allocation rule, p is a payment rule, and q is a burning
rule.

For example, a first-price auction is mathematically encoded by the triple (xf ,pf ,qf ) in which xf

is the revenue-maximizing allocation rule (Example 5.4), pf is the pay-as-bid payment rule (Ex-
ample 5.6), and qf is the all-zero burning rule (Example 5.8).

Finally, we consider only individually rational mechanisms, meaning TFMs that cannot force
users to pay more than their declared willingness to pay.

Definition 5.12 (Individual Rationality) A TFM (x,p,q) is individually rational if, for every
history B1, B2, . . . , Bk,

pt(B1, B2, . . . , , Bk) + qt(B1, B2, . . . , , Bk)︸ ︷︷ ︸
total gas price paid by t’s creator

≤ bt

for every transaction t ∈ Bk.

5.3 Incentive Compatibility (Myopic Miners)

This section formalizes what it means for a TFM to be game-theoretically sound from the per-
spective of miners—intuitively, that a miner is incentivized to implement the intended allocation
rule and disincentivized from including fake transactions. As a reminder, our current focus is on
incentives at the time scale of a single block, with longer time scales discussed in Section 7.

5.3.1 Myopic Miner Utility Function

In addition to choosing an allocation (Remark 5.3), we assume that miners can costlessly add any
number of fake transactions to the mempool (with arbitrary gas limits and bids). We call a miner
myopic if its utility—meaning the quantity that it acts to maximize—equals its net revenue from
the current block.21

21We ignore the block reward (currently 2 ETH), as it is independent of the miner’s actions and therefore irrelevant
for the single-block game-theoretic analysis in this and the next section. The block reward does, of course, affect the
security of the Ethereum blockchain (e.g. [10, 14]).
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Definition 5.13 (Myopic Miner Utility Function) For a TFM (x,p,q), on-chain history B1,
B2, . . . , Bk−1, mempool M , fake transactions F , and choice Bk ⊆ M ∪ F of included transactions
(real and fake), the utility of a myopic miner is

u(F,Bk) :=
∑

t∈Bk∩M
pt(B1, B2, . . . , , Bk) · gt︸ ︷︷ ︸
miner’s revenue

−
∑

t∈Bk∩F
qt(B1, B2, . . . , , Bk) · gt︸ ︷︷ ︸

fee burn for miner’s fake transactions

−µ
∑
t∈Bk

gt︸ ︷︷ ︸
gas costs

. (5)

The first term sums over only the real included transactions, as for fake transactions the payment
goes from the miner to itself. The second term sums over only the fake transactions, as for real
transactions the burn is paid by their creators (not the miner). In (5), we highlight the dependence
of the utility function on the two arguments that are under a miner’s direct control, the choices of
the fake transactions F and included (real and fake) transactions Bk.

22

5.3.2 Incentive-Compatibility for Myopic Miners

A transaction fee mechanism is generally designed with a specific allocation rule in mind (Re-
mark 5.3), but will miners actually implement it?

Definition 5.14 (Incentive-Compatibility for Myopic Miners (MMIC)) A TFM (x,p,q)
is incentive-compatible for myopic miners (MMIC) if, for every on-chain history B1, B2, . . . , Bk−1
and mempool M , a myopic miner maximizes its utility (5) by creating no fake transactions
(i.e., setting F = ∅) and following the suggestion of the allocation rule x (i.e., setting Bk =
x(B1, B2, . . . , Bk−1,M)).

Example 5.15 (First-Price Auctions Are MMIC) A status quo first-price auction (xf ,pf ,qf )
is MMIC. Because qf is the all-zero function (Example 5.8), the second term in (5) is zero. Because
payments equal bids (Example 5.6), miner utility equals the exact same quantity (4) maximized
by the allocation rule xf (Example 5.4). Thus, myopic miner utility is maximized by following the
allocation rule and setting Bk = xf (B1, B2, . . . , Bk−1,M).

Example 5.16 (Vickrey (Second-Price) Auctions Are Not MMIC) Vickrey (a.k.a. second-
price) auctions play as central a role in traditional auction theory as first-price auctions. Their claim
to fame is that, assuming the auction is implemented by a trusted third party, truthful bidding (i.e.,
setting one’s bid bt equal to one’s value vt) is a dominant strategy, meaning it maximizes a bidder’s
utility no matter what the other bidders do. This property sure sounds like “easy fee estimation,”
so why not use it as a TFM?

Unfortunately, Vickrey auctions can be manipulated via fake transactions and thus fail to be
MMIC. For example, consider a set of transactions that all have the same gas limit and a block that
has room for three of them. In this setting, a Vickrey auction would prescribe including the three
transactions with the highest bids and charging each of them (per unit of gas) the lowest of these
three bids.23 Now imagine that the top three bids are 10, 8, and 3. If a miner honestly executes a
Vickrey auction, its revenue will be 3× 3 = 9. If the miner instead submits a fake transaction with

22We can assume that F ⊆ Bk, as there’s no point to creating and then excluding a fake transaction.
23Actually, a Vickrey auction would prescribe charging the highest losing bid rather than the lowest winning bid.

The former is off-chain and thus unimplementable in a blockchain context, while the latter is on-chain and typically
close enough.
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bid 8 and executes a Vickrey auction (with the top two real transactions included along with the
fake transaction), its net revenue jumps to 2× 8 = 16.

Remark 5.17 (Credible Mechanisms) The definition of MMIC (Definition 5.14) is closely re-
lated to Akbarpour and Li’s notion of a credible mechanism [9]. Intuitively, a mechanism is credible
if the agent tasked with carrying it out has no plausibly deniable utility-improving deviation. For
instance, Example 5.16 is a proof that the Vickrey auction is not credible in this sense. Akbarpour
and Li [9] study both single-shot (a.k.a. “static”) mechanisms and mechanisms that require many
rounds (such as ascending auctions); the former type are much more practical for blockchain trans-
action fee mechanisms. Interestingly, one of the main results in [9, Theorem 3.7] is that first-price
auctions with an exogenously restricted bid space are the only static credible mechanisms.24 All
of the MMIC mechanisms appearing in this report—first-price auctions (Example 5.15), the 1559
mechanism (Theorem 6.4), and the tipless mechanism of Section 8.5 (Theorem 8.8)—can be viewed
as first-price auctions with different restricted bid spaces.25

Returning to status quo first-price auctions, the argument in Example 5.15 highlights two of
their properties:

(i) excluding real transactions suggested by the allocation rule strictly decreases myopic miner
utility;

(ii) including fake transactions does not increase myopic miner utility.

We next pursue a stronger version of property (ii).

5.3.3 γ-Costly Transaction Fee Mechanisms

A stronger version of property (ii) would state that, as with excluding real transactions, fake
transactions significantly decrease myopic miner utility. First-price auctions possess this stronger
property when the maximum block size constraint is binding (as fake transactions then displace
real ones) or when the marginal cost µ is large. Otherwise, a miner can devote any extra room in
a block to fake transactions without suffering a significant cost.

The next definition formalizes this stronger version of property (ii).

Definition 5.18 (γ-Costly Transaction Fee Mechanism) A TFM (x,p,q) is γ-costly if, for
every on-chain history B1, B2, . . . , Bk−1, mempool M , fake transactions F , and block Bk ⊆M ∪F
chosen by a miner, the fake transactions of Bk decrease myopic miner utility (5) by at least γ per
unit of gas:

u(F,Bk) ≤ u(∅, Bk ∩M)︸ ︷︷ ︸
utility w/out fake txs

− γ ·
∑
t∈F

gt︸ ︷︷ ︸
cost of fake txs

.

24The results in [9] assume a computationally unbounded auctioneer. Ferreira and Weinberg [26] explore what
other credible mechanisms are possible assuming a computationally bounded auctioneer and the existence of crypto-
graphically secure hash functions.

25First-price auctions correspond to the bid space [0,∞); the 1559 mechanism to the bid space {“no bid”}∪ [r,∞),
where r is the block’s base fee; and the tipless mechanism to the bid space {“no bid”, r + δ}, where r is the block’s
base fee and δ is a protocol-defined hard-coded tip.
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For example, first-price auctions are µ-costly, where µ is the marginal cost of gas to a miner, and
are not γ-costly for any γ > µ. We’ll see later (Corollary 6.5) that the transaction fee mechanism
proposed in EIP-1559 is generally γ-costly for larger values of γ, and in this sense more aggressively
punishes fake transactions.

5.4 Incentive Compatibility (Users)

Next we formalize what it means for a TFM to be game-theoretically sound from the perspective of
users—intuitively, that there is an “obvious’ optimal bid” when creating a new transaction. This
is also our definition of a “good user experience” is the sense of easy fee estimation (see Section 4).

5.4.1 User Utility Function

Recall from Section 5.1 that the value vt of a transaction t is the maximum gas price the transaction’s
creator would be willing to pay for its inclusion in the current block. We assume that a user bids in
order to maximize its net gain (i.e., the value for inclusion minus the cost for inclusion). To reason
about the different possible bids for a transaction t submitted to a mempool M , we use M(bt) to
denote the result of adding the transaction t with bid bt to M . For simplicity, we assume that each
transaction in the current mempool has a distinct creator.

Definition 5.19 (User Utility Function) For a TFM (x,p,q), on-chain historyB1, B2, . . . , Bk−1,
and mempool M , the utility of the originator of a transaction t /∈M with value vt and bid bt is

ut(bt) :=

vt − pt(B1, . . . , Bk−1, Bk)︸ ︷︷ ︸
payment to miner (per-gas-unit)

− qt(B1, . . . , Bk−1, Bk)︸ ︷︷ ︸
fee burn (per-gas-unit)

 · gt (6)

if t is included in Bk = x(B1, . . . , Bk−1,M(bt)) and 0 otherwise.

In (6), we highlight the dependence of the utility function on the argument that is directly under
a user’s control, the bid bt submitted with the transaction. We assume that a transaction creator
bids to maximize the utility function in (6).26

5.4.2 Bidding Strategies and Ex Post Nash Equilibrium

Intuitively, “easy fee estimation” should mean that the “obvious” bidding strategy is optimal.
Formally, a bidding strategy is a function b∗ that specifies a bid b∗(vt) for a transaction t as a
function of the value vt of that transaction. A bidding strategy is a function of the value vt only
(which is known to the transaction creator) and not, for example, bids submitted by competing
transactions (which are not).27 For example, a plausible bidding strategy in a first-price auction is
to shade one’s bid, but not by too much, perhaps by setting b∗(vt) = .75vt for all vt.

26While the creator of a transaction t has no direct control over x, p, or q, its bid bt is embedded in M(bt) and there-
fore can affect Bk = x(B1, . . . , Bk−1,M(bt)). This, in turn, can affect pt(B1, . . . , Bk−1, Bk) and qt(B1, . . . , Bk−1, Bk).
For example, whether or not xt(B1, . . . , Bk−1,M(bt)) = 1 generally depends on whether or not bt is large relative to
the bids of competing transactions in M .

27A bidding strategy can depend also on the blockchain history (e.g., with EIP-1559, on the current base fee). For
the purposes of a single-block game-theoretic analysis, we can take the history as fixed and suppress this dependence
in the notation.
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Suppose we have in mind an “obvious” bidding strategy b∗(·) for users to employ. What does
it mean that bidding in this obvious way is “always optimal”? The answer is formalized by the
concept of a symmetric ex post Nash equilibrium (symmetric EPNE). Intuitively, obvious bidding
should maximize a user’s utility as long as all the other users are also bidding in the obvious way.28

Definition 5.20 (Symmetric Ex Post Nash Equilibrium (Symmetric EPNE)) Fix a TFM
(x,p,q) and the on-chain history B1, B2, . . . , Bk−1. A bidding strategy b∗(·) is a symmetric ex post
Nash equilibrium (symmetric EPNE) if, for every mempool M in which all transactions’ bids were
set according to this strategy, and for every transaction t /∈M with value vt, bidding b∗(vt) maxi-
mizes the utility (6) of t’s creator.

Crucially, following the bid recommendation b∗(vt) of a symmetric EPNE does not require reasoning
about competing transactions in M , other than keeping the faith that their bids were set according
to the bid recommendations of the symmetric EPNE.29

We can now define a TFM to be incentive-compatible from the user perspective if there’s always
an obvious bidding strategy in the form of a symmetric EPNE.

Definition 5.21 (Incentive-Compatibility for Users (UIC)) A TFM (x,p,q) is incentive-
compatible for users (UIC) if, for every on-chain history B1, B2, . . . , Bk−1, there is a symmetric
EPNE.

In this report, we identify “mechanisms with easy fee estimation” and “mechanisms with good UX”
with the UIC condition of Definition 5.21.

Example 5.22 (First-Price Auctions Are Not UIC) First-price auctions are not easy to rea-
son about, in the sense that they are not UIC. Intuitively, the utility-maximizing bid depends on
the precise numerical values of others’ bids, and not merely on the qualitative knowledge that they
are following a particular bidding strategy.

For example, consider a block with room for one transaction, a transaction t with value vt = 10,
and suppose that all transactions other than t use the same bidding strategy b∗(vs) = .75 · vs. If
the highest value of vs of any transaction s 6= t is 10, then the highest bid by any such transaction
will be 7.5, and the utility-maximizing bid for t’s creator will be 7.51. If the highest other value
is 8, the optimal bid is 6.01; and so on. The key point is that the optimal bid to include with the
transaction is a function not only of that transaction’s value, but also of the values of the competing
transactions (even after assuming that all their bids are set using a known bidding strategy b∗(·)).

Thus, in a precise sense, first-price auctions do not offer “good UX” in the form of an easy-to-follow
optimal bid recommendation. We’ll see later (Theorem 6.8) that the transaction fee mechanism
proposed in EIP-1559 is UIC except during periods of rapidly increasing demand.

28“Symmetric” refers to the fact that the obvious bidding strategy b∗(·) is the same for every transaction t.
29An even stronger notion is a dominant-strategy equilibrium, in which b∗(vt) is optimal for t’s creator no matter

what the other users do. “Obvious bidding” is not a dominant-strategy equilibrium in the transaction fee mechanism
proposed in EIP-1559 (see Remark 6.10), but it is in a variant with hard-coded tips (see Theorem 8.9 and footnote 56).
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5.5 Off-Chain Agreements

The game-theoretic guarantees in Section 5.3 concern attacks that manipulate the contents of a
block (by including fake transactions, or more generally deviating from the allocation intended
by the transaction fee mechanism). This section treats a different type of attack that is also
implementable at the time scale of a single block, namely collusive agreements between miners and
users. Recall that a set T of transactions is feasible if the total gas

∑
t∈T gt is at most the maximum

block size G.

Definition 5.23 (Off-Chain Agreement (OCA)) For a feasible set T of transactions and a
miner m, an off-chain agreement (OCA) between T ’s creators and m specifies:

(i) a bid vector b, with bt indicating the bid to be submitted with the transaction t ∈ T ;

(ii) a per-gas-unit ETH transfer τt from the creator of each transaction t ∈ T to the miner m.

In an OCA, each creator of a transaction t agrees to submit t on-chain with a bid of bt while
transferring τt per unit of gas to the miner m off-chain; the miner, in turn, agrees to mine a
block B(b) comprising the transactions in T (with on-chain bids b).

Example 5.24 (Moving Payments Off-Chain) To get a feel for OCAs, imagine a first-price
auction in which 50% of the revenue is burned and the other 50% is transferred to the miner. (See
also Section 8.2.) Miners and users could then collude as follows:

1. Users bid zero on-chain and communicate off-chain what they would have bid in a standard
first-price auction.

2. Miners keep 75% of the (off-chain) bids of the transactions they include, with the other 25%
refunded to those transactions’ creators.

In the notation of Definition 5.23, this is the OCA (b, τ ) in which b = 0 and τt = .75b′t, where b′t
denotes what t’s creator would have bid in a first-price auction without fee-burning. Compared to
the “honest” on-chain outcome with bids b′, miners earn 50% more revenue and users enjoy a 25%
discount, both at the expense of the network.

Given a TFM (x,p,q) and on-chain history B1, B2, . . . , Bk−1, the utility of t’s creator from
such an OCA (b, τ ) is given by the right-hand side of (6), less its transfer to the miner:

(vt − pt(B1, . . . , Bk−1, B(b))− qt(B1, . . . , Bk−1, B(b))− τt) · gt. (7)

(Users not part of T receive zero utility.) The miner’s utility is given by the sum of on-chain and
off-chain payments received, less the costs incurred:∑

t∈T
(pt(B1, B2, . . . , Bk−1, B(b)) + τt − µ) · gt. (8)

Adding up these utility functions—one per transaction t ∈ T , plus one for the miner—results in
the joint utility enjoyed by all parties in an OCA (b, τ ):

uT,m(b, τ ) :=
∑
t∈T

(vt − qt(B1, . . . , Bk−1, B(b))− µ) · gt.
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From the coalition’s perspective, on-chain and off-chain payments from the users to the miner (the
pt’s and τt’s) remain within the coalition and thus cancel out; the fee burn (the qt’s) is transferred
outside the coalition (to the network) and is therefore a loss. Thus, the point of an OCA is to
maximize the joint utility—the amount of transaction value that is not lost to the protocol or to
the miner’s costs.

Definition 5.25 (Joint Utility) For an on-chain history B1, B2, . . . , Bk−1, the joint utility of the
miner and users for the block Bk is∑

t∈Bk

(vt − qt(B1, B2, . . . , Bk−1, Bk)− µ) · gt. (9)

We assume that miners and users act to maximize their joint utility. Using transfers, a miner and
users can then split this joint utility among themselves in an arbitrary way.30 For this reason,
when analyzing OCAs, we can focus on the joint utility (9) of the miner and the creators of the
included transactions, without concern about how it might be split among them and the creators
of the excluded transactions.

A TFM is then OCA-proof if, for every OCA, there is an equally good on-chain outcome. For
a set of transactions U and bids b for those transactions, we denote by U(b) the corresponding
mempool.

Definition 5.26 (OCA-Proof) A TFM (x,p,q) is OCA-proof if, for every on-chain history B1,
B2, . . . , Bk−1 and set U of outstanding transactions, there exists bids b∗ for the transactions of U
such that, for the resulting on-chain outcome Bk = x(B1, B2, . . . , Bk−1, U(b∗)),∑

t∈Bk

(vt − qt(B1, . . . , Bk−1, Bk)− µ) · gt︸ ︷︷ ︸
joint utility of on-chain outcome

≥ uT,m(b, τ ) (10)

for every feasible subset T ⊆ U of transactions and OCA (b, τ ) between their creators and the
miner m.

In other words, if a TFM is not OCA-proof, there are scenarios in which a miner and users can
collude to achieve higher joint utility—and, after defining appropriate transfers, higher individual
utilities—than in any on-chain outcome.

Intuitively, first-price auctions are OCA-proof because off-chain payments can be costlessly
replaced by on-chain bids. The next example formally verifies Definition 5.26.

Example 5.27 (First-Price Auctions Are OCA-Proof) Consider a set U of transactions and
set b∗t = vt for every t ∈ U . Then, because qf is the all-zero function (Example 5.8), the objective (4)
maximized by the allocation rule xf is identical to the joint utility (9). Thus, the joint utility of
the on-chain outcome with bids b∗ cannot be improved upon by any OCA.

30For example, suppose an OCA increases the joint utility of a coalition by increasing the utility of six users by 1
ETH each while decreasing the miner’s utility by 5 ETH. The OCA transfers can then be adjusted so that all parties
enjoy strictly higher individual utility, for example by sending an extra 11

12
ETH from each of these users to the miner.

Additional transfers can be used to also strictly increase the utility of the creators of the transactions excluded from
the block Bk.
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Remark 5.28 (OCA-Proofness and Fee Burning) OCAs are the biggest game-theoretic driver
for the why and the how of the fee burn in the transaction fee mechanism proposed in EIP-1559.
For example, adding a fee burn to a first-price auction destroys its OCA-proofness (Section 8.2).
Meanwhile, because of OCAs, a history-dependent base fee has no teeth unless revenue from it is
burned or otherwise withheld from the miner (Section 8.1).

6 Formal Analysis of the 1559 Mechanism with Myopic Miners

This section investigates to what extent the transaction fee mechanism proposed in EIP-1559—
henceforth, the 1559 mechanism—satisfies the three game-theoretic guarantees identified in Sec-
tion 5 (MMIC, UIC, and OCA-proofness). Section 6.1 translates the description of the mechanism
in Section 2.3 into the formalism introduced in Section 5. Sections 6.2–6.4 prove that the mech-
anism is always MMIC and OCA-proof, and is UIC except during periods of rapidly increasing
demand.

Game-Theoretic Guarantees for the 1559 Mechanism

1. Myopic miners are incentivized to follow the intended allocation rule, and are
strictly disincentivized from including fake transactions in a block.

2. Except in periods of a large and sudden demand spike, there are “obvious”
optimal bids for users: set a transaction’s fee cap to its value and its tip to
cover the marginal cost of gas to the miner.

3. Miners and users can never improve their joint utility through an off-chain
agreement.

6.1 The 1559 Mechanism

Recall from Section 2.3 that, in the 1559 mechanism, each block is associated with a base fee that
is fixed by the history of past blocks and independent of the contents of the current block; we
denote by α(B1, B2, . . . , Bk−1) the base fee for the next block that is determined by a particular
history B1, B2, . . . , Bk−1. The specific function α proposed in EIP-1559 is the iteration of the
base fee update rule in (2), although these details will not be important for the single-block game-
theoretic analysis carried out in this section.

Recall also that, in EIP-1559, each transaction specifies a tip δt and a fee cap ct. These two
parameters induce a bid bt for the transaction with respect to any given base fee r, namely

bt = min{r + δt, ct}. (11)

Definition 6.1 (1559 Allocation Rule) For each history B1, B2, . . . , Bk−1 and corresponding
base fee r = α(B1, B2, . . . , Bk−1), the (intended) allocation rule x∗ of the 1559 mechanism is to
include a feasible subset of outstanding transactions that maximizes the sum of the gas-weighted
bids, less the gas costs and total base fee paid. That is, the x∗t ’s are assigned 0-1 values to maximize∑

t∈M
x∗t (B1, B2, . . . , Bk−1,M) · (bt − r − µ) · gt, (12)
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subject to the block size constraint (3).

The payment rule transfers the difference between the bid and the base fee to the miner.

Definition 6.2 (1559 Payment Rule) In the 1559 mechanism, letting r = α(B1, B2, . . . , Bk−1),

p∗t (B1, B2, . . . , Bk−1, Bk) = bt − r

for all B1, B2, . . . , Bk and t ∈ Bk.

The burning rule burns the base fee.

Definition 6.3 (1559 Burning Rule) In the 1559 mechanism, letting r = α(B1, B2, . . . , Bk−1),

q∗t (B1, B2, . . . , Bk−1, Bk) = r

for all B1, B2, . . . , Bk and t ∈ Bk.

Formally, the 1559 mechanism is the TFM mathematically encoded by the triple of rules (x∗,p∗,q∗)
described in Definitions 6.1–6.3.

6.2 The 1559 Mechanism Is Incentive Compatible for Myopic Miners

This section evaluates the 1559 mechanism from the perspective of myopic miners, and specifically
the MMIC property (Definition 5.14) and γ-costliness (Definition 5.18).

Theorem 6.4 (The 1559 Mechanism is MMIC) The 1559 mechanism (x∗,p∗,q∗) is MMIC.

Proof: Fix an on-chain history B1, B2, . . . , Bk−1, a mempool M , and a marginal cost of gas µ ≥ 0
(as in Remark 3.2). Let r denote the corresponding base fee α(B1, B2, . . . , Bk−1) for the current
block. Substituting in Definitions 6.2 and 6.3, myopic miner utility (5) equals

u(F,Bk) =
∑

t∈Bk∩M
(bt − r − µ) · gt︸ ︷︷ ︸

net revenue from Bk

−
∑

t∈Bk∩F
(r + µ) · gt︸ ︷︷ ︸

cost of fake txs

, (13)

where Bk denotes the transactions included by the miner and F the fake transactions that it creates.
Included fake transactions strictly increase the second term (by r+µ per unit of gas) while leaving
the first unaffected, so a myopic miner will only include real transactions in Bk. In this case, myopic
miner utility equals ∑

t∈Bk

(bt − r − µ) · gt,

which is identical to the quantity (12) maximized by the allocation rule x∗ (Definition 6.1).
Thus, myopic miner utility is maximized by following the allocation rule and setting Bk equal
to x∗(B1, B2, . . . , Bk−1,M). �

From the expression (13) for myopic miner utility in the 1559 mechanism, we can see immediately
that it is γ-costly (Definition 5.18) for γ = r + µ.
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Corollary 6.5 (The 1559 Mechanism is (r + µ)-Costly) Fix an on-chain history B1, B2, . . . , Bk−1
and corresponding base fee r = α(B1, B2, . . . , Bk−1) for the current block, a mempool M , and a
marginal cost of gas µ ≥ 0. The 1559 mechanism is (r + µ)-costly.

Remark 6.6 (Role of the Fee Burn) If the base fee was paid to miners rather than burned, the
1559 mechanism would only be µ-costly and fake transactions would be only mildly disincentivized.
The primary motivation for the fee burn, however, is to rule out its evasion by off-chain agreements
(see Section 8.1).

6.3 The 1559 Mechanism Is Typically Incentive Compatible for Users

The 1559 mechanism is always incentive compatible for myopic miners, no matter what the current
base fee and demand for block space (Theorem 6.4). We next show that the mechanism is also
incentive compatible for users, except in periods of rapidly increasing demand.

6.3.1 Excessively Low Base Fees

The next definition is a proxy for a period of rapidly increasing demand.

Definition 6.7 (Excessively Low Base Fee) Let µ denote the marginal cost per unit of gas. A
base fee r is excessively low for a mempool M of transactions if the demand at price r+ µ exceeds
the maximum block size G: ∑

t∈M : vt≥r+µ
gt︸ ︷︷ ︸

demand at price r + µ

> G. (14)

Excessively low base fees arise from large and sudden demand spikes. In Example 3.3 in Section 3.2,
for instance, none of the eight periods suffer from an excessively low base fee, despite the sudden
doubling of demand. Modifying that example so that demand more than doubles in period 2,
there is a sequence of periods with excessively low base fees, ending once the base fee has increased
enough to bring demand back down below 25M gas (Table 2).

Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7 Period 8

Demand Low High High High High High High Low

EIP-1559 Base Fee 33.33 33.33 37.5 42.18 47.46 53.39 60.06 66.19

EIP-1559 Block Size 12.5M 25M 25M 25M 25M 25M 24.49M 10.04M

Excessively low? No Yes Yes Yes Yes Yes No No

Table 2: An example of excessively low base fees due to a large and sudden jump in demand. The
marginal cost µ of gas is 0. “Low” demand means the demand curve D(p) = 15000000 − 75000p;
“high” means the demand curve D(p) = 35000000−175000p. (Here “demand” means the total gas
consumed by all pending transactions with a value of p or more.) The second and third rows show
the joint evolution of the base fee and block size under the EIP-1559 mechanism, assuming that
the base fee matches the market-clearing price in period 1 and that all users submit a bid equal to
the minimum of their value and the base fee. Periods 2–6 suffer from excessively low base fees.
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6.3.2 The 1559 Mechanism Is UIC Except with Excessively Low Base Fees

When the base fee is excessively low, users must compete for scarce block space through their tips,
and the 1559 mechanism effectively reverts back to a first-price auction. As first-price auctions
are essentially never UIC (see Example 5.22), the 1559 mechanism is not UIC when the base fee
is excessively low. The good news is that an excessively low base fee is the only reason why the
1559 mechanism might fail to be UIC. That is, whenever the base fee is not excessively low, there
is an “obvious optimal bid” in the form of a symmetric EPNE (Definition 5.20). This optimal
bid corresponds to setting a transaction’s fee cap equal to its creator’s value (i.e., ct = vt), and a
transaction’s tip equal to the marginal cost of gas to a miner (i.e., δt = µ).

Theorem 6.8 (The 1559 Mechanism Is Typically UIC) Fix an on-chain history B1, B2, . . . , Bk−1
and corresponding base fee r = α(B1, B2, . . . , Bk−1), a marginal cost µ of gas to miners, and a
mempool M of transactions for which r is not excessively low. The bidding strategy

b∗(vt) = min{r + µ, vt} (15)

constitutes a symmetric EPNE under the 1559 mechanism.

Proof: Suppose each creator of a transaction t ∈ M sets its bid according to the strategy b∗(·)
in (15); we need to show that no creator could increase its expected utility (6) by changing its bid
(holding the bids of other transactions fixed).

The objective (12) of the 1559 allocation rule prescribes including precisely the transactions t ∈
M with bt ≥ r + µ. Because b∗(vt) = min{r + µ, vt} for all t ∈ M , these are precisely the
transactions t ∈ M with vt ≥ r + µ. In particular, because r is not excessively low for M , this
allocation is feasible: ∑

t∈M : b∗(vt)≥r+µ

gt︸ ︷︷ ︸
gas of included txs

=
∑

t∈M : vt≥r+µ
gt︸ ︷︷ ︸

demand at price r + µ

≤ G. (16)

There are two types of transactions t to consider, high-value (vt ≥ r + µ) and low-value (vt <
r + µ); see also Table 3. When all bids are set according the strategy b∗(·) in (15), the former
transactions are included (and pay b∗(vt) = r+µ per unit of gas) while the latter are excluded (and
pay nothing). The utility (6) of t’s creator is (vt − r − µ) · gt ≥ 0 if t is a high-value transaction
and 0 otherwise. Every alternative bid b̂t for a high-value transaction either has no effect on its
creator’s utility (if b̂t ≥ r + µ) or leads to t’s exclusion from the block (if b̂t < r + µ) and reduces
this utility from (vt − r − µ) · gt to 0. Every alternative bid b̂t for a low-value transaction either
has no effect on its creator’s utility or leads to t’s inclusion in the block; the latter can only occur
when b̂t ≥ r + µ, in which case the creator’s utility drops from 0 to (vt − b̂t) · gt < 0. We conclude
that there is no alternative bid for any transaction of M that increases its creator’s utility. �

Theorem 6.8 and its proof show that, at its symmetric EPNE, the 1559 mechanism acts a
posted-price mechanism (Section 4.2) except when the base fee is excessively low.

The 1559 Mechanism Is Typically a Posted-Price Mechanism

The 1559 mechanism acts as a posted-price mechanism at the price r + µ, where r
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Low-Value (vt < r + µ) High-Value (vt ≥ r + µ)

Bid at EPNE vt r + µ
Utility at EPNE 0 (vt − r − µ) · gt ≥ 0

Utility of Alternative ≤ (vt − r − µ) · gt < 0 0

Table 3: Proof of Theorem 6.8. For both low- and high-value transactions, no unilateral deviation
from the symmetric EPNE bid can increase a user’s utility.

is the base fee and µ is the marginal cost of gas, except during periods of rapidly
increasing demand.

Remark 6.9 (Welfare Properties of the 1559 Mechanism) An attractive property of the sym-
metric EPNE in (15) is that the outcome perfectly differentiates between high-value (vt ≥ r + µ)
and low-value (vt < r + µ) transactions, including the former while excluding the latter. This
outcome can be viewed as a market-clearing outcome (Section 3.1) with respect to a supply of G∗

gas, where G∗ denotes the demand at price r + µ.

Remark 6.10 (The Obvious Bid Is Not a Dominant Strategy) The symmetric EPNE (15)
in the proof of Theorem 6.8 is not a dominant-strategy equilibrium in the sense of footnote 29. The
issue arises when the creators of other transactions overstate their fee caps, in which case the base
fee could become excessively low with respect to the stated demand (even though it is not with
respect to the true demand). In particular, the equality in (16) need not hold if other transactions’
bids are set arbitrarily.

Remark 6.11 (Expected Frequency of Excessively Low Base Fees) Demand for EVM com-
putation has generally been volatile, at both short and long time scales. For this reason, one would
expect at least occasional excessively low base fees. It would be interesting to predict, perhaps
based on experiments using historical demand data, the likely frequency of excessively low base
fees in a post-EIP-1559 world.

6.4 The 1559 Mechanism Is OCA-Proof

Finally, we show that, under the 1559 mechanism, miners and users cannot improve their joint
utility through off-chain agreements. A key driver of this result is that the fee burn (per unit of
gas) does not depend on the current actions of the miner or users (cf., Section 8.2).

Theorem 6.12 (The 1559 Mechanism is OCA-Proof) The 1559 mechanism (x∗,p∗,q∗) is
OCA-proof.

Proof: Fix an on-chain historyB1, B2, . . . , Bk−1 and corresponding base fee r = α(B1, B2, . . . , Bk−1).
Consider a set U of transactions and set b∗t = vt for every t ∈ U . Then, because q∗ is the constant
function always equal to r (Definition 6.3), the objective (12) maximized by the allocation rule x∗

is identical to the joint utility (9). Thus, the joint utility of the on-chain outcome with bids b∗

cannot be improved upon by any OCA. �
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7 Miner Collusion at Longer Time Scales

Section 6 demonstrates that the 1559 mechanism enjoys several game-theoretic guarantees at the
time scale of a single block. But what about longer time scales? For example, to achieve the
typically-UIC guarantee in Theorem 6.8, the mechanism introduces a history-dependent base fee
that is burned; a natural worry is that miners may be incentivized to manipulate and artificially
decrease this base fee over time.

This section investigates the incentives for miner collusion, both under the status quo and
under EIP-1559. Section 7.1 formalizes “extreme miner collusion” through a thought experiment
in which a single miner controls 100% of Ethereum’s hashrate. Section 7.2 identifies the revenue-
maximizing strategy for such a miner in a first-price auction; in some cases, the miner is incentivized
to artificially restrict the supply of EVM computation in order to boost the bids submitted by
creators of high-value transactions. Section 7.3 repeats the exercise for the 1559 mechanism and
determines that the outcome of extreme collusion would be similar to that with today’s first-
price auctions. Section 7.4 classifies different types of miner collusion and reviews to what extent
each type appears to occur in Ethereum at present. Section 7.5 argues that the game-theoretic
impediments to double-spend, censorship, denial-of-service, and revenue-maximizing 100% miner
strategies (including base fee manipulation) appear as strong under EIP-1559 as under the status
quo. Finally, Section 7.6 brainstorms possible reasons for why miner collusion might nevertheless
be more likely under EIP-1559 than it is today.

7.1 Extreme Collusion: The 100% Miner Thought Experiment

The fidelity of the myopic miner model of Sections 5–6 depends on the degree of decentralization in
Ethereum mining. For example, with extreme decentralization, such as the hashrate being spread
equally across millions of non-colluding miners, any given miner mines a block so rarely that there
is no point to non-myopic strategies (i.e., strategies that forego immediate rewards in favor of future
rewards). In particular, in the 1559 mechanism, because the base fee is set by past history and
independent of the current block, no such miner will be interested in manipulating it.

To meaningfully study miner deviations such as base fee manipulation, we must therefore con-
sider miners (or tightly coordinated mining pools) that possess a significant fraction of the total
hashrate and strategize at time scales longer than a single block.31 To get the lay of the land, we
next investigate both first-price auctions and the 1559 mechanism in the opposite extreme scenario
in which all of the hashrate is controlled by a single miner or, equivalently, a perfectly coordinated
cartel comprising all of the miners.32

The 100% Miner Thought Experiment

1. A single miner controls 100% of the hashrate.

2. The miner acts to maximize its net revenue received from transaction fees over
a significant period of time (e.g., thousands of blocks).

31We continue to assume that users are myopic, and bid to maximize their utility in the current block (Defini-
tion 5.19). Simulations by Monnot [45] suggest that more complex user strategies do not significantly change the
behavior of the mechanism proposed in EIP-1559.

32A similar approach is taken by Hasu et al. [32] in the context of Bitcoin and Zoltu [59] in the context of EIP-1559.

29



3. The demand curve (see Section 3) is the same for every block, independent of
the miner’s actions, and known to the miner.

The second assumption clarifies that the thought experiments in Sections 7.2 and 7.3 will not
consider off-chain rewards, for example from a double-spend attack, in order to isolate incentive
issues specific to the transaction fee mechanism. The point of the third assumption is to stack the
deck against a protocol by making it as easy as possible for a miner or cartel of miners to identify
and carry out optimal deviations from the protocol’s prescriptions.

7.2 First-Price Auctions with a 100% Miner

What would a 100% miner do under the status quo of first-price auctions? Let D(p) denote the
demand curve—the total gas demanded at a gas price of p gwei. We assume that D(p) is a
continuous and strictly decreasing function, and that D(p) = 0 once p is sufficiently large. We
continue to assume that the demand curve is exogenous, the same for every block, and known to
the miner.

We consider strategies of the following form:

Strategies for a 100% Miner

1. Price-setting: for a gas price p with D(p) ≤ G, include a transaction in
the block if and only if its gas price is at least p. (As usual, G denotes the
maximum block size.)33

2. Quantity-setting: for a quantity q ≤ G, include the transactions with the
highest gas prices, up to a limit of q on the total gas.34

In our model, these two types of strategies are equivalent—a price-setting strategy at the price p
has the same effect as a quantity-setting strategy at the quantity q = D(p). In either case, a creator
of a transaction t with vt ≥ p should be expected to respond by bidding the fixed price p (enough
for inclusion in the block), and one with vt < p to bid something between 0 and vt (in any case,
being excluded from the block).

Because there are no dependencies between first-price auctions in different blocks and no fee
burn, a 100% miner maximizes its net revenue by maximizing its revenue from each block separately.
For a single block, the revenue earned by a miner using a price-setting strategy with price p (or the
equivalent quantity-setting strategy) is the price times the quantity willing to pay it:35

R(p) := p ·D(p). (17)

For ease of exposition, in this section we focus on demand curves for which the revenue (17) is a
strictly concave function (as is the case with, for example, a linear demand curve).

Because a 100% miner can be thought of as a monopoly on EVM computation, there is an
obvious price and quantity to focus on:

33For an analogy, think of a consultant with a unique skill set committing to an hourly rate.
34For an analogy, think of a restriction on oil production set by the Organization of the Petroleum Exporting

Countries (OPEC).
35For simplicity, we assume in this section that the marginal cost of gas to a miner—the parameter µ in Sections 5–

6—is zero. The conclusions of this section remain the same for a positive marginal cost.
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Definition 7.1 (Monopoly Price and Quantity) Consider a maximum block size G and a de-
mand curve D(·) for which the revenue (17) is a strictly concave function of price. If p̄ attains the
maximum in (17), then:

(a) the monopoly price is the revenue-maximizing price or the market-clearing price, whichever
is larger:36

p∗ := max{p̄, D−1(G)}; (18)

(b) the monopoly quantity is the revenue-maximizing quantity or the maximum block size, whichever
is smaller:

q∗ := D(p∗) = min{D(p̄), G}. (19)

Example 7.2 (Monopoly Prices and Quantites) Suppose the maximum block sizeG is 12.5M
gas and the demand curve is D(p) = 30000000 − 150000p (as in Figure 1). The revenue (17) as a
function of price is 30000000p − 150000p2. This function is differentiable and strictly concave, so
its unique maximum p̄ is the point at which the derivative 30000000 − 300000p equals 0. Thus,
p̄ = 100 gwei and D(p̄) = 15M gas. This exceeds the maximum block size of 12.5M gas, and hence
the monopoly price is the market-clearing price D−1(12.5M) = 1162

3 gwei.
If instead the demand curve was D(p) = 20000000 − 150000p, p̄ would be 662

3 gwei and D(p̄)
would be 10M gas. In this case, the monopoly price is strictly higher than the market-clearing price
(of 50 gwei) and the monopoly quantity is strictly smaller than the maximum block size.

Price-setting at the monopoly price or quantity-setting at the monopoly quantity both have the
effect of maximizing revenue (17) subject to the maximum block size. That is, these are precisely
the optimal strategies for a 100% miner:

Optimal Strategies for a 100% Miner (First-Price Auctions)

• A 100% miner would price-set at the monopoly price or quantity-set at the
monopoly quantity.

• If the monopoly quantity is the maximum gas size (equivalently, the monopoly
price is the market-clearing price), a 100% miner would not deviate from the
intended allocation rule of a first-price auction (Example 5.4).

We conclude that, with a first-price auction, extreme miner collusion can increase transaction fee
revenue if and only if the monopoly quantity is less than the maximum block size; in this case,
miners can boost revenues by artificially restricting the supply of EVM computation, thereby forcing
the creators of high-value transactions to submit higher bids for their inclusion.

Remark 7.3 (Detecting a Price- or Quantity-Setting Strategy) Suppose a cartel of miners
implemented a quantity-setting strategy (with quantity less than 12.5M gas), or the corresponding
price-setting strategy. Would anyone notice? Naively executed, persistent underfull blocks would
be a dead giveaway. But if miners include fake transactions to keep all the blocks full, such a
strategy could be difficult to conclusively detect.

36See Section 3.1 for the definition of a market-clearing price.
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7.3 EIP-1559 with a 100% Miner

EIP-1559, described in Section 2.3, would have two immediate consequences for the 100% miner
thought experiment. First, a miner would strive to simultaneously maximize the transaction fee
revenue (as in a first-price auction) and minimize the amount of these fees lost to the fee burn.
Second, a miner’s allocation decision in one block would affect the base fee (and hence net revenue
earned) in future blocks. Now what’s the miner’s optimal strategy?

First suppose that the monopoly quantity (Definition 7.1) is at most the target block size
of 12.5M gas. (Recall that the maximum block size G is double this amount under EIP-1559.)
In this case, the maximum block size may as well be 12.5M gas—a 100% miner will never use
more than this, as doing so would decrease its net revenue both in the current block (for including
more gas than the monopoly quantity) and in future blocks (because of the increased base fee, as
per (2)). Thus, the best-case scenario for a 100% miner is to match the revenue of a 100% miner
under the status quo (Section 7.2) while simultaneously paying no fee burn. A 100% miner can
closely approximate this best-case scenario:

Optimal Strategy for a 100% Miner (Monopoly Quantity ≤ 12.5M gas)

1. Drive the base fee to zero (or its minimum amount) from its initial value, for
example by publishing a sequence of empty blocks.

2. For all future blocks, proceed as a 100% miner would with first-price auctions,
by using the monopoly quantity-setting strategy.

Because the monopoly quantity is at most the target block size, the base fee will remain at its
minimum value forevermore. Notably, in this case, the outcome of extreme miner collusion is
essentially the same under EIP-1559 as under the status quo!

When the monopoly quantity is more than the target block size, a 100% miner faces the non-
trivial optimization problem of optimally trading off the short-term revenue gain from including
more than 12.5M gas in a block and the long-term revenue decrease due to higher future base
fees. The optimal solution to this problem depends in an intricate way on the assumed demand
curve D(·); a detailed discussion of it is outside the scope of this report. Qualitatively, we can view
this optimal strategy as an optimized version of the quantity-setting strategy with quantity 12.5M
gas, in which the variable block size of EIP-1559 is exploited to mix underfull and overfull blocks
so as to boost net revenue (even after accounting for the nonzero fee burn).

Remark 7.4 (51% Miner = 100% Miner) A miner or perfectly coordinated cartel of miners
controlling 51% of the overall hashrate can control 100% of the blocks on the longest chain by
refusing to extend any block mined by a miner outside the cartel. Thus, the optimal 100% miner
strategies identified in this and the previous section are equally well available to a 51% miner37,38

37Or at least, to a 51% miner unconcerned with detectable coordinated strategies; see Section 7.4.4 for further
discussion.

38Even a medium-size miner or mining pool—over 20% of the total hashrate, say, as with the two biggest Ethereum
mining pools [6]—could conceivably benefit from a monopoly price-setting or quantity-setting strategy, if enough users
are willing to pay a premium to avoid a 20% chance of a transaction being delayed by one block.
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7.4 First-Price Auctions: Do Miners Collude?

We offer no prediction on whether miners would collude under EIP-1559, for example to implement
some form of the 100% miner optimal strategy identified in Section 7.3. We can, however, speculate
in a principled way via analogy with observed miner behavior under the status quo.

7.4.1 Types of Miner Coordination

Miners can coordinate their actions in a number of ways. Next we single out three factors that
may influence the likelihood of a cartel of miners carrying out a particular coordinated strat-
egy.

Classifying Coordinated Strategies

1. Is the coordinated strategy plausibly for the good of the entire Ethereum
network, or clearly for the good of the miners?

2. Is the coordinated strategy easily detectable?

3. Is the cartel of miners game-theoretically robust (with an incentive for cartel
members to remain) or game-theoretically fragile (with an incentive for mem-
bers to secede, for example by switching to solo mining or joining a competing
mining pool)?

7.4.2 Coordination for the Greater Good

Ethereum miners do appear to coordinate their actions at times, for example when resolving hard
forks or increasing the maximum block size (which in Ethereum is voted on by miners). In these
cases, the goal is plausibly to maximize the health of the Ethereum network. For example, increases
in the maximum block size over time may have been a balancing act between minimizing transaction
fees and minimizing the centralization risk due to the computation and communication necessary
to process blocks.39

Miners appear to coordinate when the goal is plausibly to maximize the health of
the Ethereum network.

7.4.3 The Risk of Undetectable Coordination

The key question is then whether miners will use this coordination ability to pursue goals that are
primarily in their own interest, rather than in the interest of the network. The risk is greatest from
undetectable strategies.

Miners should not be expected to eschew undetectable coordinated strategies that
are in their own self-interest.

Protocols should therefore be designed to avoid such undetectable strategies whenever possible, or
at least to render them game-theoretically fragile (see Section 7.4.5).

39A plausible alternative narrative is that miners are maximizing their rewards from transaction fees subject to
acceptance of the maximum block size by the network.
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Example 7.5 (Fake Transactions in Vickrey Auctions Are Undetectable) Example 5.16
notes that Vickrey (a.k.a. second-price) auctions can be manipulated via fake transactions to boost
a miner’s revenue. Such manipulation could be difficult to detect, and a miner (myopic or otherwise)
would have a strong incentive to do it. This reinforces the argument against Vickrey auctions in
permissionless blockchains.

7.4.4 The Lack of Detectable Coordinated Strategies in the Wild

What about detectable coordinated strategies that favor the miners over the network? For exam-
ple:

Three Types of Detectable Attacks by a 51% Cartel

1. A double-spend attack via a significant blockchain reorganization.

2. A censorship attack in which every block referencing a blacklisted address is
deliberately orphaned by the cartel.

3. A denial-of-service attack in which every non-empty block is deliberately or-
phaned by the cartel.

All three of these attacks have been rare to non-existent in Ethereum.40 Why? We can only
speculate on the reasons:

Possible Reasons Miners Avoid Detectable Attacks

1. Enough miners (or mining pools) are fundamentally opposed to deliberate
attacks that might harm the Ethereum network, due to altruism or blind
loyalty, that a 51% cartel cannot form.

2. Many miners are ETH holders and believe that a detectable attack would
significantly decrease the price of ETH.41

3. Many miners have some other form of vested interest in the health of the
Ethereum network and believe it would be significantly damaged by a de-
tectable attack. For example, an ASIC is effectively a call option on ETH [28,
57].

4. Miners fear that they would be punished for a significant detectable attack
through a hard fork.42

7.4.5 Game-Theoretic Fragility

Perhaps miners will carry out a self-interested coordinated strategy if and only if it is undetectable?
The monopoly price- and quantity-setting strategies identified in Section 7.2 indicate that reality

40Less secure blockchains, including Ethereum Classic, have suffered from such attacks [40].
41Though three recent double-spend attacks on the Ethereum Classic blockchain have not significantly harmed the

price of ETC; perhaps that blockchain’s relatively low level of security has been priced in all along. See also Moroz
et al. [46] for further discussion.

42This fear is perhaps more relevant for ASIC miners than for GPU miners.
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is more complex. Appropriately disguised versions of these strategies can be difficult to detect (Re-
mark 7.3), and yet there is little to no anecdotal evidence suggesting that Ethereum miners have ever
coordinated to implement such strategies. Again, there are many possible explanations:

Possible Reasons for the Lack of Price- and Quantity-Setting Strategies

1. Miners would implement such strategies if they could, but there are too many
obstacles (e.g., rapidly changing and hard-to-predict demand) to coordinating
on a price or quantity for a significant length of time.

2. Miners would implement such strategies if it was in their self-interest, but
typically the monopoly quantity for the current demand curve (Definition 7.1)
equals the maximum block size and no deviation from the protocol’s prescribed
behavior is necessary.

3. Disguising such strategies is too difficult, so all the arguments against de-
tectable strategies apply.

4. Implementing such strategies could hurt the throughput and therefore health
of the Ethereum network, which many miners have a vested interest in.

5. A large cartel of miners would be game-theoretically fragile, with cartel mem-
bers incentivized to secede.

To illustrate the last point, we proceed as in Houy [34]. Imagine that all miners belong to
the cartel and implement an optimal 100% miner strategy, such as price-setting at a monopoly
price p∗ that is larger than the market-clearing price p̄. Thus, all transactions with bid at least p∗

get included in a block while all the other transactions languish in the mempool; because p∗ > p̄,
blocks will not be full.

The optimal myopic miner strategy (Section 5.3), meanwhile, would be to ignore the cutoff p∗

and pack the current block as full as possible with the transactions with the highest bids. This
strategy maximizes the miner’s short-term revenue rather than leaving money on the table to
sustain the upward price pressure on the creators of high-value transactions. In effect, such a
myopic miner would be free riding on the sacrifices of the other miners which prop up the bids
of high-value transactions. A small miner is well approximated by a myopic miner, so one might
well expect such a miner to secede from the cartel to implement the optimal strategy for a myopic
miner rather than for a 100% miner.

A cartel of miners could discourage secession by its members through the threat of punishment.
For example, if the rest of the cartel controls at least 51% of the overall hashrate, the remaining
miners could refuse to extend any block that does not conform to its rules, such as blocks that are
packed with more than the monopoly quantity worth of gas.43 However, there is little evidence of
any Ethereum miners employing such punishment strategies. Why not? Perhaps they have not
been needed. Perhaps carrying them out would be too logistically complex. Or perhaps punishment
strategies are inevitably detectable and therefore run into all the impediments listed in Section 7.4.4
for detectable coordinated strategies.

43The “feather forking” variant of this strategy has the potential to succeed even with less than 50% of the overall
hashrate [41].
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We hypothesize that coordinated strategies that harm the Ethereum network and require a
credible threat of punishment to sustain might pose little risk.

Hypothesis: Game-Theoretic Fragility Is a Dealbreaker

Coordinated miner strategies that:

(i) favor miners at the expense of the network;

(ii) require short-term sacrifices from each member for the good of the cartel; and

(iii) are costly or difficult to sustain through punishment

may be rare in a well-secured blockchain such as Ethereum.

7.4.6 The Upshot

The discussion in this section clarifies the most worrisome type of miner coordination, which de-
serves special attention when designing or modifying a protocol:

The most concerning type of coordinated miner strategy is one that:

1. is in the interest of miners, rather than the network;

2. is undetectable; and

3. is game-theoretically robust, with cartel members incentivized to remain.

Revisiting the four types of coordinated strategies discussed in this section—double-spend attacks,
censorship attacks, denial-of-service attacks, and monopoly price- or quantity-setting—we see that
the first three attacks fail the second criterion while the fourth strategy fails the third.

7.5 EIP-1559: Will Miners Collude?

We now speculate on the likelihood of different forms of miner coordination (Section 7.4) in a
post-EIP-1559 world.

First, all of the arguments in Section 7.4.4 against detectable attacks remain equally valid under
EIP-1559, and the specific attacks discussed (double-spend, censorship, denial-of-service) remain
equally detectable.

Second, while the optimal 100% miner strategy is generally different under EIP-1559 (Sec-
tion 7.3) than under the status quo (Section 7.2) due to base fee manipulation, four of the five
potential impediments to implementing the latter (identified in Section 7.4.5) apply also to the
former.44 In particular, a cartel simulating the optimal 100% miner strategy under EIP-1559 is
game-theoretically fragile. Analogous to a first-price auction, a myopic miner is incentivized to
pack its block as full as possible with the transactions with the highest tips (up to 25M gas, which
is double the target block size). This strategy maximizes short-term miner revenue rather than
leaving money on the table in order to keep future base fees low. In effect, such a myopic miner

44The exception is the second point. Under EIP-1559, the 100% miner strategy is generally different from the
honest mining strategy even when the monopoly quantity exceeds the target block size (see Section 7.3).
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would be free riding on the sacrifices of the other miners that respect the target block size and
thereby keep the base fee low.

Third, because of the 1559 mechanism’s fee burn, fake transactions can no longer be costlessly
used to disguise an attack that simulates the optimal 100% miner strategy (cf., Remark 7.3 and
first-price auctions). Because this strategy is now either costly or detectable, it is arguably even
less likely to be used under EIP-1559 than under the status quo.

The game-theoretic impediments to double-spend attacks, censorship attacks, denial-
of-service attacks, and revenue-maximizing 100% miner strategies (including base fee
manipulation) appear as strong under EIP-1559 as under the status quo.45

7.6 Caveats

Sections 7.4–7.5 show that, with both first-price auctions and the 1559 mechanism, all of the
most concerning forms of miner collusion (double-spending, censorship, denial-of-service, revenue-
maximization) are detectable, game-theoretically fragile, or both. But is this really enough evidence
to conclude that the harmful effects of miner collusion will be no worse under EIP-1559 than they
are now? This section plays devil’s advocate and suggests some possible complications.

Because of the burned base fee revenues, many miners appear to view EIP-1559 as taking away
some of their profits and handing them over to ETH holders.46 For example, of the nine miners
responding to a questionnaire by Beiko [12], six wrote that “they would not implement it under
any circumstances.” This strong negative reaction suggests that EIP-1559 may galvanize miners
to sustain collusion to a degree not yet seen under the status quo.

An immediate issue is miner adoption, and the plan for the deployment and acceptance of EIP-
1559 should be explicitly discussed. For example, can the Ethereum Foundation effectively dictate
its use? Or is the plan to first secure support from major projects built on top of Ethereum (e.g.,
the USDC stable coin), thereby forcing miners’ hands? Or should further support from miners be
sought out directly, and perhaps explicitly incentivized?

A second concern is that the 1559 mechanism’s fee burn could change the norms around what
types of miner collusion are culturally acceptable (e.g., coordinating on a new maximum block size)
versus unacceptable (e.g., a censorship attack). For example, imagine that miners coordinated
their actions to avoid the base fee but otherwise acted as in a first-price auction with a maximum

45One counterpoint is that the reduction of miner revenue on account of the fee burn would likely reduce the overall
hashrate, lowering the cost to a saboteur of launching these attacks (e.g., by renting sufficient hashrate [7, 13]).
Under EIP-1559, the block reward alone must be sufficiently high to incentivize an adequate amount of hashrate and
consequent security.

46There is merit to this argument but also some counterbalancing factors. First, because Ethereum mining has a
relatively low barrier to entry and exit, a decrease in aggregate miner rewards should lead to a decrease in the overall
hashrate, with the least profitable miners exiting (see e.g. [25, 35]). This, in turn, increases the relative hashrate
(and corresponding fraction of miners’ rewards) of the miners who remain. (Ethereum security suffers as a result but
remains propped up by the block reward [10, 14], which EIP-1559 leaves untouched.)

Second, there is evidence that an increasing share of Ethereum transaction fees are paid by transactions vying for
special treatment within a block (e.g., being placed first so as to execute prior to all other transactions in the same
block) [33]. Provided the willingness to pay of such transactions is significantly higher than the market-clearing price
at the target block size of 12.5M gas—the quantity that the base fee proxies for—miners should continue to collect
significant fees from them through their tips in the 1559 mechanism.
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block size of 12.5M gas.47 Like the optimal 100% miner strategy in Section 7.5, such coordination
is game-theoretically fragile and requires each miner to leave immediate revenue on the table that
could otherwise be collected by including more than 12.5M gas worth of transactions in a block. On
the other hand, this coordinated strategy could be much less damaging to the Ethereum network
than something like a censorship attack or throttling the transaction rate to boost miner revenues.
If such a strategy was widely perceived as mostly harmless—perhaps unlikely in this instance, given
the Ethereum community’s general enthusiasm for counteracting inflation with a fee burn—it could
conceivably find more purchase among miners.

8 Alternative Designs

Does EIP-1559 need to work the way that it does? Are there alternative designs that accomplish
the same goals in a better or simpler way?

Sections 8.1 and 8.2 argue that the seemingly orthogonal goals of easy fee estimation and fee
burning are in fact inextricably linked through the threat of off-chain agreements. Section 8.3
investigates a design that pays revenue from transaction fees forward to miners of future blocks,
an alternative to fee burning with similar game-theoretic properties. Section 8.4 recaps a recent
transaction fee mechanism proposal by Basu et al. [11]. Section 8.5 discusses an alternative design
that, relative to the 1559 mechanism, favors UIC over OCA-proofness. Section 8.6 explores the
possibilities for alternative base fee update rules.

8.1 Paying the Base Fee to the Miner

The 1559 mechanism achieves a “good user experience,” in the form of a typically-UIC guarantee
(Theorem 6.8). At first glance, the proof of this guarantee seems to hinge on two assumptions: (i)
the base fee is determined only by past history and independent of the current block; and (ii) the
base fee is high enough that the demand for gas is at most the maximum block size. Where does
fee burning come in?

Specifically, consider the following alternative design in which base fee revenues are passed on
to the miner of the block; we call this the 1559-R mechanism. (Here “R” stands for “refund.”) The
allocation rule xR is identical to that of the 1559 mechanism (the rule x∗ in Definition 6.1). Miners
can no longer be counted on to exclude transactions with bid less than the base fee, so assume that
the protocol automatically treats as invalid any transaction t in a block with a bid bt that is less
than that block’s base fee r. The new payment rule pR is identical to the payment rule pf of a
first-price auction (Example 5.6), with the miner collecting the entire bid (i.e., the minimum of the
fee cap and the sum of the base fee and tip) as revenue. The new burning rule qR is also the same
as in a first-price auction—the all-zero rule qf .

Unfortunately, with a simple off-chain agreement, the 1559-R mechanism devolves into a first-
price auction (with block size 25M gas, double the target):48

1. Users bid r on-chain and communicate off-chain what they would have bid in a standard
first-price auction.

47Such coordination can be implemented with a variation of the strategy in Section 7.5: first drive the base fee to
zero, for example by publishing a sequence of empty blocks, and then use the quantity-setting strategy with quantity
12.5M gas for all future blocks (thereby keeping the base fee at zero forevermore).

48The base fee of the 1559-R mechanism would therefore eventually increase to its maximum level.
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2. If a miner includes a transaction t with off-chain bid bt, t’s creator transfers bt − r gwei per
unit of gas to the miner. (When bt < r, this should be interpreted as a refund of r − bt per
unit of gas from the miner to t’s creator.)

In the notation of Definition 5.23, this is the OCA (b, τ ) in which b = r and τt = (b′t− r), where b′t
denotes what t’s creator would have bid in a standard first-price auction.

Proposition 8.1 (The 1559-R Mechanism Is Equivalent to a First-Price Auction) For
every set of transactions and base fee, there is a one-to-one correspondence between the outcomes
possible in a first-price auction and the outcomes possible in the 1559-R mechanism with an OCA
(with the same maximum block size).

Proof: As noted above, the outcome of the bids b′ in a first-price auction is equivalent to the
outcome of the on-chain bids r under the 1559-R mechanism with off-chain transfers b′− r. In the
other direction, for an outcome of the 1559-R mechanism and an OCA in which the net payment
from the creator of an included transaction t to the miner is at, the outcome of a first-price auction
in which the (on-chain) bids b′ are the same as a (for included transactions) or 0 (for excluded
transactions) is equivalent. �

Transferring the revenue from the base fee of a block to the miner of that block is
economically equivalent to having no base fee. In this sense, a base fee provides UX
improvements only if it is burned (or otherwise withheld from the miner).

Remark 8.2 (Partial Refund of the Base Fee) Proposition 8.1 shows that, because of the
possibility of off-chain agreements, burning 0% of the base fee is economically equivalent to having
no base fee at all. More generally, burning an α fraction of the base fee is economically equivalent
to having a fully burned base fee that is α times as large. For example, consider a scenario in which
the 1559 mechanism’s base fee would stabilize at r∗. If instead half of the base fee was burned, one
would expect the new mechanism to stabilize at a base fee of 2r∗, with r∗ of it burned and the rest
divvied up between the miner and users via an OCA.49

Remark 8.3 (Implementing the Monopoly Price Under the 1559-R Mechanism) A sec-
ond (if less important) issue with the 1559-R mechanism is that, unlike with the 1559 mechanism,
there are scenarios in which a coordinated miner strategy meets all three of the criteria in Sec-
tion 7.4.6—favoring the miners at the expense of the network, undetectable, and game-theoretically
robust.

In more detail, suppose the demand curve D(·) is the same for every block and, at the monopoly
price p∗, the demand (i.e., monopoly quantity) D(p∗) is less than the target block size of 12.5M gas.
Suppose also that the marginal cost µ of gas to a miner is negligible. Miners can now simulate the
revenue-maximizing p∗-price-setting strategy (Section 7.2) simply by keeping the base fee at r∗ at
all times: (i) increase the base fee to r∗, using fake transactions as necessary; (ii) keep the base fee
at r∗ forevermore by publishing 12.5M gas blocks, each including D(p∗) total gas of real transactions
and the balance in fake transactions. This strategy is game-theoretically robust because, given that

49The designers of the NEAR blockchain, possibly unaware of this point, recently deployed a version of the 1559
mechanism in which 70% of the base fee is burned and the remaining 30% is transferred to smart contracts that were
used in the previous epoch [5]. See Hasu [29] for further discussion.
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past blocks have resulted in a base fee of p∗, a myopic miner maximizes its immediate revenue by
including all eligible transactions (i.e., those with bid at least p∗) and is not harmed by the inclusion
of additional fake transactions.

8.2 Fee-Burning First-Price Auctions

Alternatively, suppose we wanted a transaction fee mechanism with a fee burn but didn’t care
about easy fee estimation. Why not stick with first-price auctions, but burn all (or part) of the
fees? Formally, this is the TFM (x,p,q) with x = xf ,p = qf , and q = pf .

The problem is again the threat of off-chain agreements. Intuitively, first-price auctions in
which all payments are burned are not OCA-proof because miners and users would be incentivized
to move all their payments off-chain. The next proposition formally shows that this mechanism
fails to satisfy Definition 5.26.

Proposition 8.4 (Fee-Burning First-Price Auctions Are Not OCA-Proof) The fee-burn-
ing first-price auction (xf ,qf ,pf ) is not OCA-proof.

Proof: Consider a non-empty set U of transactions with vt > 0 for every t ∈ U , and assume that
the marginal cost µ of gas to a miner is negligible. Assume also that there is a unique feasible
subset T ⊆ U of transactions maximizing the total value∑

t∈T
vt · gt,

and denote this maximum-possible total value by V > 0. The miner m and users can obtain joint
utility V through an OCA (b, τ ) between the creators of T and m in which bt = 0 and (for example)
τt = vt/2 for every t ∈ T .

The joint utility (9) of an on-chain outcome is V if and only if the included transactions are
precisely T and there is zero fee burn. Every bid vector b∗ in which b∗t > 0 for at least one
transaction t leads to a non-zero fee burn (on account of maximizing (4)) and hence cannot achieve
joint utility V . Meanwhile, the all-zero bid vector b∗ = 0 leads to an arbitrary feasible set T ′ ⊆ U
of transactions, which is generally different than T . �

Moreover, in the obvious OCA for the miner and users to employ in the proof of Proposition 8.4,
the on-chain bids are zero and so there is no fee burn whatsoever!

Burning the fees of a first-price auction moves all payments off-chain and leads to
zero fee burning. In this sense, a non-trivial fee burn requires a base fee.

Remark 8.5 (Partial Fee-Burning) The same argument and conclusion apply more generally
to a first-price auction in which any fixed positive fraction of the fees are burned.

8.3 Paying the Base Fee Forward

Section 8.1 shows that, for a block’s base fee to be economically meaningful, revenues from it cannot
be passed on to the miner of the block. Perhaps the simplest way to withhold this revenue, as in
the current EIP-1559 spec [20], is to burn these revenues, effectively issuing a lump-sum refund to
all ETH holders. An alternative solution, discussed explicitly in [17], is to transfer these revenues
to one or more miners of other blocks.
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8.3.1 The `-Smoothed Mechanism

Concretely, consider the variant of the 1559 mechanism in which, for some window length ` (hard-
coded into the protocol), the base fee revenues from a block are split equally among the miners of
the next ` blocks. (The 1559 mechanism can be thought of as the special case in which ` = 0.) Thus,
a miner of a block receives a 1/` fraction of the sum of the base fee revenues from the previous `
blocks, along with all of the tips from the current block.

We can define the `-smoothed mechanism as follows. Fix a blockchain history B1, B2, . . . , Bk−1
with k ≥ ` + 1. Let ri = α(B1, B2, . . . , Bi−1) denote the base fee of block Bi, where α is the
iteration of the EIP-1559 update rule (2). Let Rk = β(B1, B2, . . . , Bk−1) denote the paid-forward
base fee revenues:

β(B1, B2, . . . , Bk−1) :=
1

`

k−1∑
i=k−`

ri ·Gi,

where Gi =
∑

t∈Bi
gt denotes Bi’s size in gas. The allocation, payment, and burning rules of the

`-smoothed mechanism are formally identical to those of the 1559 mechanism (Definition 6.1–6.3),
with the understanding that the burning rule (a constant function always equal to rk) now indicates
a payment that is paid forward to future miners rather than burned. Technically, the paid-forward
base fee revenues Rk should be added to a miner’s utility function (Definition 5.13), but because Rk
is independent of the miner’s current actions, it has no effect on the optimal strategy of a myopic
miner (or user). In effect, Rk serves as a fixed bonus added to the standard block reward.

8.3.2 Properties of the `-Smoothed Mechanism

Because users are indifferent to how their payments are directed, and because a myopic miner cares
only about its revenue from the current block, all of the game-theoretic guarantees for users and
myopic miners satisfied by the 1559 mechanism (Theorem 6.4, Corollary 6.5, Theorem 6.8, and
Theorem 6.12) carry over to the `-smoothed mechanism (for any `).

Theorem 8.6 (Guarantees for the `-Smoothed Mechanism) For every ` ≥ 0, the `-smoothed
mechanism is:

(i) MMIC;

(ii) (r + µ)-costly, where r is the current base fee and µ is the marginal cost of gas;

(iii) UIC, provided the current base fee is not excessively low for the current demand; and

(iv) OCA-proof.

Theorem 8.6 holds no matter how the base fee and pay-forward rewards are defined (i.e., for any
functions α and β).

The discussion on sustained collusion by miners under EIP-1559 (Section 7) applies also to
the `-smoothed mechanism, with some small changes. First, for a demand curve with monopoly
quantity more than 12.5M gas, a 100% miner will be better off in the `-smoothed mechanism (with
` ≥ 1) because it will avoid the non-zero fee burn it would otherwise have paid (see Section 7.3).
Second, the reasoning behind the game-theoretic fragility (Section 7.4.5) of a cartel of miners
simulating a 100% miner strategy is more complicated. As before, lost tip revenue disincentives
a cartel member from manipulating the base fee downward—the only manipulation of concern
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when base fee revenues are burned. With the base fee revenues returned to a 100% miner by the
`-smoothed mechanism, it’s now also important that fake transactions are costly (Theorem 8.6(ii))
to disincentive manipulations of the base fee upward. Finally, with base fee revenues going to
miners rather than ETH holders, the caveats in Section 7.6 become moot.

8.3.3 Pros and Cons of the `-Smoothed Mechanism

A basic question, worthy of lengthy debate by the Ethereum community, is: Who should benefit
from the user payments that are inevitably generated by a fully utilized blockchain? The fee burn
in the 1559 mechanism explicitly favors ETH holders, while the `-smoothed mechanism favors
Ethereum miners. Different stakeholders in Ethereum will of course have their own reasons for
preferring one over the other.

A second trade-off between the 1559 and `-smoothed mechanisms concerns whether variability
in demand (and hence fees) translates to variability in security or in the issuance of new currency. In
the 1559 mechanism, every block changes the money supply in two ways: minting new coins for the
block reward (currently 2 ETH), and burning the coins used to pay the base fee. Because the base
fee rises and falls with demand, Ethereum’s inflation rate would be variable and unpredictable.
On the other hand, assuming negligible tips, every block confers roughly the same total reward
to the miner (the block reward); the security of the Ethereum network scales with this total
reward [10, 14] and should therefore also stay relatively constant (modulo fluctuations in the price
of ETH). Meanwhile, in the `-smoothed mechanism, inflation would be as predictable as it is under
the status quo (currently around 4% annually). Instead, total miner reward would vary with the
revenue generated by the base fee, leading to an unpredictable level of security (though never less
than that with the 1559 mechanism).

Finally, because of its variable total reward, the `-smoothed mechanism is vulnerable to certain
attack vectors that would be fruitless under the 1559 mechanism, especially when ` is small. For
example, imagine that ` = 1 and a miner m1 mines a block B1 with an unusually large sum R of
transaction fees. This windfall would be reaped by the miner m2 of the next block B2; suppose
further that the sum of transaction fees in B2 is much less than R. At this juncture, a miner m3

might consider trying to extend B1 with a block B3 in order to orphan B2; if other miners happen
to extend B3 rather than B2, m3 will effectively have stolen the reward of R from m2.

50 Such
examples suggest choosing a large value of ` (e.g., ` = 1000) to guarantee that consecutive blocks
will have nearly identical total rewards associated with them.

Remark 8.7 (A Blended Mechanism) The 1559 and `-smoothed mechanisms can be easily
blended to balance the competing concerns of miners and ETH holders and the variability in
issuance and security. For example, for a parameter λ ∈ [0, 1], a mechanism could burn a λ fraction
of the base fee revenues and pay forward the remaining 1 − λ fraction. Theorem 8.6 and the
subsequent discussion on miner collusion remain valid for such blended mechanisms.

8.4 The BEOS Mechanism

A variant of the “pay-it-forward” design philosophy in Section 8.3 was proposed also by Basu et
al. [11] for a transaction fee mechanism that is not directly related to the 1559 mechanism. We next

50This is similar to the undercutting attack of [21] for a regime in which transaction fees dominate block rewards;
see Section 9.1 for further discussion.
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explain a slightly simplified version of their proposal, which we call the BEOS mechanism (after its
proposers).

There is a fixed block size, say 12.5M gas, and no base fee. The first key idea is to charge
all transactions included in a block a common price (per unit of gas), namely the lowest bid of
an included transaction. Miner revenue is then the block size (in gas) times the lowest bid of
an included transaction, and so a revenue-maximizing miner may exclude transactions in order to
boost the lowest included bid.51 For example, for a block with room for three transactions and a
mempool containing three transactions with bids 10, 8, and 3, a revenue-maximizing miner would
include the first two transactions while excluding the third (to earn revenue 2 × 8 = 16). (Cf.,
Example 5.16.)

The second key idea is to automatically charge only a minimum transaction fee—for example,
just enough to cover the marginal cost µ of gas—to all transactions in any block that is not (almost)
full. This rule by itself is toothless and leads to an equivalent mechanism, as a miner can costlessly
extend its favorite underfull block with minimum bid b to a full block with minimum bid b using
fake transactions (all with bid b).

The final key idea in the BEOS mechanism is to pay transaction fees forward, with the trans-
action fee revenue from a block B split evenly between B’s miner and the miners of the ` − 1
subsequent blocks. Thus, the miner of a block gets a 1/` fraction of the transaction fee revenue in
that block, along with a 1/` fraction of the combined revenue of the preceding ` − 1 blocks. As a
result, for ` ≥ 2, fake transactions now carry a cost: the miner pays their full transaction fees but
recoups only a 1/` fraction of them as revenue.

The BEOS mechanism is arguably simpler than that proposed in EIP-1559, as there is no base
fee to keep track of. Its game-theoretic guarantees are considerably weaker, however. While the
“pay it forward” idea helps discourage fake transactions, the BEOS mechanism is not in general
MMIC.52 It is “approximately UIC” as the number of users grows large, in the sense that no bidding
strategy generates significantly more utility than truthful bidding. It is not OCA-proof (for ` ≥ 2),
for the same reasons that a first-price auction with fee burning is not OCA-proof (Proposition 8.4).
Thus, from a game-theoretic perspective, the BEOS mechanism does not appear competitive with
the 1559 mechanism.

8.5 The Tipless Mechanism: Trading Off UIC and OCA-Proofness

The 1559 mechanism uses tips to achieve OCA-proofness in all blocks (Theorem 6.12), at the
expense of losing the UIC condition in blocks with excessively low base fees (see Section 6.3.2).
This section presents an alternative design with the opposite trade-off—one that is always UIC,
and OCA-proof except in blocks with an excessively low base fee.

51This is exactly the “monopolistic price” mechanism proposed by Lavi et al. [37]; they were motivated by the
problem of maximizing the security provided by transaction fees (at the expense of economic efficiency) in a future
in which Bitcoin’s block rewards are negligible. This mechanism is MMIC; is “approximately UIC,” in the sense that
truthful bidding is an approximately dominant strategy for users as the number of users grows large [37, 58]; and is
not OCA-proof (on account of failing to maximize the joint utility of the miner and users).

52Basu et al. [11] prove that the mechanism becomes “approximately MMIC” in the case of a very large number
of transactions with i.i.d. valuations drawn from a distribution with bounded support.
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8.5.1 The Tipless Mechanism

We next define the tipless mechanism, so-called because it is essentially the 1559 mechanism with
constant and hard-coded tips rather than variable and user-specified tips. As with the 1559 mecha-
nism, each block has a base fee r = α(B1, B2, . . . , Bk−1) that depends on past blocks and is burned
(or alternatively, paid forward as in Section 8.3). The creator of a transaction t specifies a fee cap ct
but no tip. This parameter induces a bid bt for the transaction with respect to any given base fee r,
namely

bt = min{r + δ, ct}. (20)

Here δ is a hard-coded tip to incentivize miners to include transactions—for example, equal to (or
perhaps slightly higher than) the marginal cost µ of gas to miners.53 The only difference between
the tipless mechanism and the 1559 mechanism is the number of user-specified parameters and
their interpretation as bids relative to the current base fee—that is, the types of bidding strategies
available to users. The allocation, payment, and burning rules of the tipless mechanism are formally
identical to those of the 1559 mechanism (Definitions 6.1–6.3). Given that all the tips are the same
and cover a miner’s marginal cost of gas, the allocation rule (12) boils down to packing a block as
full as possible with transactions t with a bid bt ≥ r + δ. The creator of an included transaction
pays r + δ gwei per unit of gas, of which r is burned and δ is transferred to the miner.54

8.5.2 Properties of the Tipless Mechanism

The proof that the 1559 mechanism is incentive compatible for myopic miners (MMIC) depends
only on the form of the allocation, payment, and burning rules of the mechanism; it is agnostic to
the process by which transactions’ bids are set (see Theorem 6.4). Thus, the same proof applies
equally well to the tipless mechanism.

Theorem 8.8 (The Tipless Mechanism is MMIC) The tipless mechanism is MMIC.

Now consider a block in which the base fee r is excessively low (Definition 6.7), meaning that the
demand for gas at price r+ δ is more than the maximum block size G. In the 1559 mechanism, the
creators of transactions willing to pay at least r+ δ must then compete for inclusion through their
tips. As a result, analogous to a first-price auction (Example 5.22), in this case the mechanism is
not incentive compatible for users (UIC)—there are no “obvious optimal parameters” to associate
with a transaction.

In the tipless mechanism, such transaction creators do not have the vocabulary to differentiate
themselves by offering to pay extra. As a result, the mechanism remains UIC even in blocks with
an excessively low base fee.

Theorem 8.9 (The Tipless Mechanism is UIC) The tipless mechanism is UIC.

Proof: Fix an on-chain historyB1, B2, . . . , Bk−1 and corresponding base fee r = α(B1, B2, . . . , Bk−1),
and a set T of transactions. Suppose the creator of a transaction t ∈ T sets its fee cap equal to its

53More generally, the hard-coded tip δ could be adjusted over time in the same way as the block reward, through
social consensus and hard forks.

54This variant of the 1559 mechanism has been implemented in the NEAR protocol [5]; see Hasu [29] for further
discussion.
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maximum willingness to pay, corresponding to the bid

b∗(vt) = min{r + δ, vt}. (21)

Could some other bid be better? For a low-value transaction (with vt < r + δ), every alternative
bid b̂t either has no effect on t’s utility or leads to t’s inclusion in the block; the latter only occurs
when b̂t ≥ r + δ, in which case the creator’s utility drops from 0 to (vt − b̂t) · gt < 0. For a high-
value transaction (with vt ≥ r + δ), every alternative bid b̂t either has no effect on the creator’s
utility or, if the alternative bid triggers t’s exclusion, drops its utility from a nonnegative number
(vt − r − δ) · gt ≥ 0 to 0.55 We conclude that the bid in (21) is always utility-maximizing for t’s
creator.56 �

Further, the tipless mechanism is OCA-proof except during periods of rapidly increasing de-
mand.

Theorem 8.10 (The Tipless Mechanism Is Typically OCA-Proof) Fix an on-chain history
B1, B2, . . . , Bk−1 and corresponding base fee r = α(B1, B2, . . . , Bk−1), and a set T of transactions
for which r is not excessively low. With δ = µ, the tipless mechanism is OCA-proof.

Proof: The joint utility (9) of the miner and users for the current block Bk is∑
t∈Bk

(vt − r − µ) · gt. (22)

Because r is not excessively low for T , the total gas consumed by transactions t with vt ≥ r + µ
is at most the maximum block size G. The joint utility (22) is therefore maximized by including
precisely these transactions. This outcome can be achieved on-chain (with bt = min{r + µ, vt} for
each t ∈ T ), and thus cannot be improved upon by an OCA. �

Remark 8.11 (The Tipless Mechanism Is Not Always OCA-Proof) The tipless mechan-
ism is not generally OCA-proof when the base fee r is excessively low (even with δ = µ). In
this case, a miner is instructed by the allocation rule to pack its block as full as possible using
transactions with bid at least r + µ. With an excessively low base fee, the feasible subset of such
transactions that maximizes the block size

∑
t∈T gt is generally different from the feasible subset

that maximizes the joint utility
∑

t∈T (vt − r − µ) · gt.57 The miner and users can then strictly
increase their joint utility with an OCA that instead includes the latter subset of transactions (for
example, with transfers arranged to share the increase in joint utility equally among the miner and
users).

55If r is an excessively low base fee and the demand at price r + δ is more than the maximum block size, the
miner maximizes its revenue by packing its block as full as possible (as the tip-per-unit-gas δ is the same for every
transaction). That is, the miner includes the feasible set of transactions that maximizes the total gas used. We
assume that, if there is a tie between two or more such feasible sets, the miner breaks the tie in a consistent way,
independent of transactions’ fee caps.

56Moreover, the bidding strategy b∗(·) is a symmetric dominant-strategy equilibrium in the sense of footnote 29.
That is, the suggested bid b∗(vt) is utility-maximizing for t’s creator no matter what the other bids are (i.e., even if
the other bids differ from those suggested by the strategy b∗(·)).

57For example, with G = 2 and r + µ = 1, consider one eligible transaction with vt = 2 and gt = 1 and another
with vt = 1 and gt = 2.
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8.5.3 Pros and Cons of the Tipless Mechanism

Perhaps the strongest argument in favor of the tipless mechanism over the 1559 mechanism is its
simplicity. On the user side, there are several simplifications. The creator of a transaction t only
has to specify one parameter (a fee cap ct) rather than two (a fee cap ct and a tip δt). The “obvious
optimal bid” in the tipless mechanism (setting ct = vt) is optimal for every block and no matter
what the bids of the competing transactions. The “obvious optimal bid” in the 1559 mechanism
(setting ct = vt and δt = µ) is optimal only in blocks without an excessively low base fee, and
only after assuming that other transactions’ bids were set in the same way. On the miner side, the
revenue-maximizing strategy simplifies to maximizing the block size while using only transactions
with a bid that is at least r + µ (where r denotes the current base fee). Relatedly, miners have no
levers by which to pressure users to increase their tips (cf., footnote 38).

What about the mechanism’s drawbacks? First, the hard-coded tip δ is yet another somewhat
arbitrary parameter than may need to be adjusted over time through network upgrades.58 Second,
when there are blocks with excessively low base fees (due to rapidly increasing demand), OCA-
proofness breaks down. At such times, one might expect miners and users to simulate the on-chain
tips of the 1559 mechanism with an off-chain agreement. Even with a base fee that is not excessively
low, such agreements might be used to accommodate transaction creators angling for a specific block
position (as opposed to mere inclusion).59

8.6 Alternative Base Fee Update Rules

The game-theoretic guarantees for the 1559 mechanism (Sections 6–7) and inseparability of easy
fee estimation and fee withholding (Section 8.1–8.3) argue strongly for a history-dependent base
fee, the revenues from which are burned or otherwise withheld from a block’s miner. Accordingly,
in this section we consider only designs with such a base fee.

But how, exactly, should the base fee be computed from the blockchain’s history? The MMIC
(Theorem 6.4), typically-UIC (Theorem 6.8), and OCA-proof (Theorem 6.12) guarantees from
Section 6 hold no matter how the base fee is set. The impediments to miner collusion identified
in Section 7 likewise give little guidance as to how the base fee should evolve over time. The goal
of this section is to clarify the assumptions baked into the update rule in the current EIP-1559
spec (2) and identify a few axes along which to experiment.

8.6.1 Assessing Update Rules

The ideal base fee for a block is the market-clearing price for the current mempool and block size (see
Section 3.1). An ideal base fee update rule would magically guess this price, immediately adjusting
to sudden changes in demand. A good base fee update rule should reasonably approximate this
magical one, without introducing any undue incentives for base fee manipulation by miners and
users or vulnerabilities to outside attacks.

Desiderata for a Base Fee Update Rule

1. Adjusts upward reasonably quickly after a sudden spike in demand.

58Possible counterargument: with so many such parameters already (e.g., opcode gas costs [56]), what’s one more?
59Depending on how miners choose to break ties among eligible transactions for inclusion in such a block, on-chain

shenanigans may also be possible (e.g. [38]).
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2. Adjusts downward reasonably quickly after a sudden drop in demand.

3. Adjusts slowly enough to avoid overreacting to small or very short-lived changes
in demand.

4. Cannot be manipulated by a cartel of users and/or miners in a game-theoretically
robust way (cf., Section 7.4.5).

5. Expensive for an attacker to exploit.

How quickly is “reasonably quickly”? How expensive is “expensive”? Such questions are outside
the scope of this report and best answered through experimentation and community discussion.
The rest of this section assesses the update rule in the EIP-1559 spec according to these criteria
and suggests some alternatives to explore.

8.6.2 Decomposable Update Rules

In principle, the base fee r for a block Bk can be an arbitrary function α of the blockchain history
B1, B2, . . . , Bk−1:

r = α(B1, B2, . . . , Bk−1).

In practice, however, the base fee should not be overly burdensome to compute. This point moti-
vates the next definition.

Definition 8.12 (Decomposable Update Rule) An update rule α is decomposable if it can be
written

α(B1, B2, . . . , Bk−1) = ζ(Bk−1) · α(B1, B2, . . . , Bk−2),

where ζ is the adjustment function.

Definition 8.12 encodes two different restrictions. First, the base fee of a block should depend on
only the base fee and the contents of the most recent block. Second, the adjustment function ζ
depends only on the contents of the most recent block Bk−1 and not on its base fee.

Example 8.13 (The EIP-1559 Update Rule Is Decomposable) The update rule (2) in the
EIP-1559 spec is decomposable with

ζ(Bk−1) = 1 +
1

8
·
(
g(Bk−1)−Gtarget

Gtarget

)
, (23)

where g(B) =
∑

t∈B gt denotes the size (in gas) of block B and Gtarget a target block size (e.g.,
12.5M gas).

A base fee computed by a decomposable update rule can be expressed in a compact product form.

Proposition 8.14 (Product Form for Decomposable Update Rules) If α is a decompos-
able update rule with adjustment function ζ and r0 is the base fee of the genesis block B1, then
for every blockchain history B1, B2, . . . , Bk−1,

α(B1, B2, . . . , Bk−1) = r0 ·
k−1∏
i=1

ζ(Bi). (24)

47



Non-decomposable update rules are more complex but could potentially be useful. For a rea-
sonably natural example, suppose we wanted to limit the lifetime over which any given block affects
the base fee:

Example 8.15 (Sliding Windows Are Not Decomposable) Consider a base fee update rule
that depends on only the most recent ` blocks, for some parameter ` (e.g., 100 or 1000):

α(B1, B2, . . . , Bk−1) = r0 ·
k−1∏
i=k−`

ζ(Bi),

where k is assumed to be at least ` + 1, and r0 and ζ denote the initial base fee and adjustment
function, respectively. Because the change in base fee depends on both the block entering the
sliding window (the most recent one) and the block exiting this window (from `+ 1 blocks back),
this update rule is not decomposable.

Remark 8.16 (Oscillatory Behavior of Decomposable Update Rules) M. Ferreira, D. Mo-
roz, and M. Stern (personal communication, October 2020) point out that, in certain pathological
scenarios, decomposable update rules can oscillate between two base fees rather than converge to a
market-clearing base fee, even during a period of stable demand. For example, consider such a rule
with an adjustment function ζ satisfying ζ(B) = 3

2 for maximum-size blocks B and ζ(B) = 2
3 for

empty blocks B. Suppose the current base fee is r and there is a huge mempool of transactions, the
fee caps of which all happen to land in the interval [1.1r, 1.4r]. (Assume that all tips are negligible.)
What happens next?

Because all transactions are willing to pay the current base fee of r, r is an excessively low base
fee and the next miner will produce a maximum-size block. As a result, the base fee will jump
from r to 3

2r, at which point no transactions are willing to pay the base fee! The next miner has no
choice but to produce an empty block, and the base fee will return to r. This oscillation between
the base fees r and 3

2r, and between maximum-size and empty blocks, could in principle continue
forever.60

Such oscillatory behavior may be unlikely in a real deployment, given the variety of tools
and considerations likely to be used when specifying the bidding parameters for a transaction. If
necessary, Ethereum clients could explicitly inject randomness into these parameters to avoid such
pathological outcomes.

Having noted that non-decomposable update rules may be worth experimenting with, we now
narrow our focus to decomposable rules.

8.6.3 What Should the Adjustment Function Depend On?

Designing a decomposable update rule boils down to designing its adjustment function ζ. By
assumption, this function depends only on the contents of the most recent block Bk−1. In principle,
the function ζ(B) could depend on B’s contents in arbitrarily complex ways. In the EIP-1559
adjustment function (23), ζ(B) depends only on the total gas g(B) =

∑
t∈B gt used in B, and not

on any finer-grained information about its transactions.

60With the adjustment function in the current EIP-1559 spec (23), such an oscillation will stop eventually, although
possibly only after a large number of blocks (depending on how tightly concentrated transactions’ bids are).
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While it’s easy to imagine alternative adjustment functions, care must be taken with the in-
centives. As a cautionary tale, consider an adjustment function ζ that tries to do away with
variable-size blocks through its dependence on the bids attached to the transactions in a block B.

Example 8.17 (Incorporating Bids into the Adjustment Function) In this design, the tar-
get block size and the maximum block size are the same (e.g., 12.5M gas). If a block B has size
less than the maximum, then the adjustment function satisfies ζ(B) < 1 and the base fee decreases
for the next block (as in EIP-1559). For a full block B, the adjustment function considers the
minimum (or average, or median, or. . . ) tip of a transaction in the block. If this statistic is close
to 0, the base fee remains unchanged (ζ(B) = 1); if it’s significantly larger than 0, the base fee
increases (ζ(B) > 1).

The problem? When the current base fee is excessively low, there is no disincentive to the users
or miners from colluding to keep it low. For suppose miners and users moved the tip market off-
chain, similar to the proof of Proposition 8.4. Users and miners are indifferent to whether payments
are on- or off-chain, as the fee burn and gas costs are the same either way. But now the on-chain
tips are all 0 and the base fee will not increase.

Remark 8.18 (OCA-Proofness vs. Miner Collusion) The off-chain agreement in Example 8.17
does not violate OCA-proofness (users and miners are equally well off with the OCA, but not strictly
better off) and hence does not contradict the aforementioned fact that the 1559 mechanism remains
OCA-proof no matter how its base fee is computed. However, the OCA in Example 8.17 does show
that this variant of the 1559 mechanism encourages the most concerning type of coordinated miner
strategy (Section 7.4.6)—one that favors the miners at the expense of the network, is potentially
undetectable, and is game-theoretically robust.

More generally, Example 8.17 illustrates how OCAs can be used to manipulate any attempt to
incorporate the bids attached to a block’s transactions into the adjustment function. Given these
dangers, it is unsurprising that the adjustment function in EIP-1559 depends only on the gas
consumed by the included transactions, and it is unclear if any additional information could be
safely used.

8.6.4 The Functional Form of the Adjustment Function

Even after committing to an adjustment function that is a function solely of the block size there
remains flexibility in the function’s form and parameters. The choices of these in the EIP-1559
adjustment function (23) appear fairly arbitrary and are prime candidates for experimentation; we
next offer some possible alternatives.

By assumption, we are now considering update rules of the form ζ(B) = f(g(B)), where f is a
univariate real-valued function and g(B) =

∑
t∈T gt denotes the size of block B. Only nondecreasing

functions are sensible choices for f—big blocks suggest excess demand and that the base fee should
be increased, small blocks that it should be decreased. Any continuous such function f effectively
has a “target block size,” meaning a gas threshold Gtarget such that f(Gtarget) = 1.

What functional form should f have? The current EIP-1559 spec uses an adjustment func-
tion (23) with the form

f(x) = 1 + h(x), (25)
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where h is an increasing linear function with h(Gtarget) = 0. Linear functions are attractive for their
simplicity, but a nonlinear function h might well strike a better balance between the competing
goals listed in Section 8.6.1.

V. Buterin (personal communication, October 2020) suggests an alternative functional form,
motivated by the fact that the function 1 + x is well approximated by ex when x is small (where
e = 2.718 . . . is Euler’s number):

f(x) = eh(x), (26)

where h is an increasing function equal to 0 at Gtarget. Decomposable update rules with an adjust-
ment function of this form are especially aesthetically appealing when written in product form (24):

α(B1, B2, . . . , Bk−1) = r0 ·
k−1∏
i=1

ζ(Bi) = r0 ·
k−1∏
i=1

eh(g(Bi)) = r0 · exp

{
k−1∑
i=1

h(g(Bi))

}
.

For example, plugging in the function h(x) = (x −Gtarget)/8Gtarget used in the current EIP-1559
spec:

α(B1, B2, . . . , Bk−1) = r0 · exp

{
1

8

k−1∑
i=1

(
g(Bi)−Gtarget

Gtarget

)}

= r0 · exp

{
1

8

(∑
t∈B1∪···∪Bk−1

gt

Gtarget
− (k − 1)

)}
.

The final expression makes clear that this base fee depends only on the amount of gas consumed to
date (along with the block height k and initial base fee r0), and not on how this gas was distributed
across the past blocks. The adjustment function (23) proposed in EIP-1559 does not have this
property; for example, two blocks with size equal to the target leave the base fee unchanged, while
an empty block followed by a block with size double the target (or vice versa) have the cumulative
effect of multiplying the base fee by 63

64 .

Remark 8.19 (Compromising with Taylor Approximations) Exponential functions are less
convenient numerically than polynomials. The adjustment function in (25) can be viewed as a
degree-1 polynomial approximation of the exponential adjustment function (26). A natural com-
promise is to instead use the degree-2 polynomial approximation suggested by the exponential
function’s Taylor series:

f(x) = 1 + h(x) +
h(x)2

2
.

For example, plugging in the function h(x) = (x − Gtarget)/8Gtarget gives a novel adjustment
function:

ζ(B) = 1 +
1

8
· g(B)−Gtarget

Gtarget
+

1

128

(g(B)−Gtarget)2

G2
target

.

8.6.5 Choosing the Rate of Change

One “magic number” that jumps out from the adjustment function (23) proposed in EIP-1559 is
the factor of 1

8 , which controls how rapidly the base fee can change from one block to the next. More
generally, an important design question is the minimum and maximum values that an adjustment
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function ζ(B) can take on (in (23), 7
8 and 9

8 , respectively). The goal should be to strike a balance
between the desiderata listed in Section 8.6.1.

The factor of 1
8 in (23) means that a sequence of maximum-size blocks (with double the target

size) would double the base fee in under 1.5 minutes (assuming one new block on average every
13–15 seconds [2]) and increase it by an order of magnitude in under 5 minutes. A sequence of
empty blocks would decrease the base fee at a similar, slightly faster, rate. Thus, for demand shocks
that persist for tens of minutes or more, the base fee should have sufficient time to adjust. The
base fee would not respond much to short-lived demand shocks, although sudden demand increases
would be mitigated by the additional throughput offered by variable-size blocks (cf., Example 3.3).
Overall, for balancing the first three desiderata in Section 8.6.1, the initial choices of the factors 7

8
and 9

8 for the minimum and maximum change in base fee seem as good as any. However, this design
choice should clearly be revisited after there is more data from experiments with and deployments
of the 1559 mechanism.61

A different principled way to derive a maximum rate of change for the base fee is to consider an
attacking cartel of miners that strives to overwhelm the network with a sequence of maximum-size
blocks (cf., the fifth goal in Section 8.6.1). For example, consider the adjustment function in (23)
and suppose that the minimum base fee is 1 gwei and the maximum block size is 25M gas. Five
minutes of such a “double-full block attack,” starting from the minimum-possible base fee and
assuming that all blocks during this period are mined by the cartel, would typically cost at least

25000000︸ ︷︷ ︸
max block size (gas)

×
20∑
i=1

(
9

8

)i−1
︸ ︷︷ ︸
base fee of

ith block (gwei)

≈ 1.9 ETH;

thirty minutes would cost roughly

25000000×
120∑
i=1

(
9

8

)i−1
≈ 275000 ETH,

or roughly 165 million USD at an exchange rate of 600 USD/ETH; and so on. Similar calculations
can be used to reverse engineer an appropriate maximum rate of base fee change from a target cost
for a double-full block attack of a given duration.

Remark 8.20 (Variable Block Sizes vs. Variable Rate of Block Creation) Short (e.g., five-
minute) double-full block attacks appear unlikely to significantly harm the Ethereum network, pro-
vided the existing vulnerabilities to adversarially constructed blocks [49] are addressed. A sequence
of n double-full blocks in a given time period imposes roughly the same load on the network as 2n
target-size blocks during the same period. Because blocks are effectively created by a Poisson pro-
cess rather than deterministically, the Ethereum network must already accommodate short periods
during which the gas consumption is double its expectation.62

61For example, the factor of 1
8

could be added to the list of hard-coded parameters whose values are revisited with
every network upgrade, joining the block reward, opcode gas costs, and so on.

62And with the proof-of-stake design in ETH 2.0, the rate of block creation will be roughly deterministic; there,
the new variability in block sizes under EIP-1559 will effectively be canceled out by the variability eliminated from
the rate of block creation.
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8.6.6 Choosing the Block Elasticity

A second “magic number” in EIP-1559 is the ratio of 2 between the maximum and target block
sizes. Holding the target block size fixed, why not a larger maximum block size? Or a smaller one?

For flexibility and to absorb short and sudden demand spikes (cf., Example 3.3), a bigger max-
imum block size is better. The problem with a big maximum block size is the computation and
bandwidth required by full nodes to process blocks, and the consequent risks of greater centraliza-
tion. A ratio of 2 is one simple compromise between these two competing forces.

A ratio of 2 between the maximum and target block size is also convenient because only a 51%
cartel of miners could significantly manipulate the base fee or the long-run average block size. (For
example, with a 49% cartel, the non-colluding miners can negate maximum-size blocks with empty
blocks and vice versa.) With a ratio of only 3

2 , say, one of two compromises must be struck: (i)
leave the base fee adjustment function as in (23), in which case a 34% cartel could manipulate
the base fee downward (as it would now take two maximum-size blocks to negate an empty block
produced by the cartel); or (ii) make the adjustment function in (23) asymmetric so that empty and
maximum-size blocks continue to negate each other, in which case a 34% cartel could reduce the
long-run average block size to less than the target block size, thereby reducing throughput (again
by producing empty blocks). Ratios bigger than 2 seem less problematic, as a 34% cartel of miners
would presumably not want to manipulate a burned base fee upward.

Overall, these points suggest taking the ratio between the maximum and target block size as
large as possible, subject to the network having the computational resources to process a short
burst of maximum-size blocks. The “best” choice of this parameter may evolve over time, and
could be added to the list of parameter choices that are revisited with each network upgrade.

9 Additional Remarks

9.1 Side Benefits of EIP-1559

This report assesses the transaction fee mechanism proposed in EIP-1559 from the perspective
of easy fee estimation for Ethereum users (formalized by the “typically-UIC” guarantee of Theo-
rem 6.8). Several byproducts of the design are of value in their own right.

First, as we observed in Section 3.2, easy fee estimation and the introduction of variable block
sizes should decrease the variance in transaction fees during periods of changing demand.

Second, EIP-1559 introduces fee burning through its burned base fee. Fee burning (or otherwise
withholding base fee revenues from a block’s miner) is necessary for the base fee to be economically
meaningful (see Section 8.1), but arguably is a “necessary good” rather than a “necessary evil.”
Ethereum’s current rate of inflation—due to block, uncle, and nephew rewards—is roughly 4%. If
transaction fees continue to be high, and a significant portion of them are burned, the inflation
rate will decrease and could even turn negative.63,64 In any case, because burned fees are effectively
a lump sum refund to ETH holders, the value of ETH would be tied directly to the intensity of
network usage. Additionally, burned fees must be paid on-chain and in ETH, thereby imbuing ETH
with unique functionality.65

63For example, in September 2020, Ethereum miners made more money from transaction fees than from block
rewards [36].

64The inflation rate will become less predictable, however.
65In contrast, mere transfers between users and miners can be moved off-chain and paid using a different asset
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Third, EIP-1559’s base fee can serve as a difficult-to-manipulate proxy for the current market-
clearing gas price, which can in turn enable a variety of new smart contracts (e.g., gas futures
markets).

Finally, there are well-documented incentive issues when transaction fees dominate block re-
wards, for example the incentive for a miner to launch an undercutting attack that forks a block
with an unusually large amount of transaction fees [21]. By directing transaction fees away from
miners and to the network, EIP-1559 decreases the importance of transaction fees to miners and
makes such attacks less attractive.66

9.2 The Escalator: EIP-2593

EIP-2593 (a.k.a. the “escalator”) is another proposal, orthogonal to EIP-1559, that strives to
improve the user experience through more convenient fee estimation [27].67 Its goal is not to change
Ethereum’s transaction fee mechanism (which would remain a first-price auction), but rather to
make bidding easier for Ethereum users through a richer menu of bidding options. Specifically,
rather than a single gas price, an Ethereum transaction would now come equipped with four
bidding-related parameters:

(i) the smallest block height at which the transaction is valid, and a bid for that block;

(ii) the largest block height at which the transaction is valid, and a bid for that block.

Bids for all intermediate blocks are then determined automatically via linear interpolation. For
example, a bid of 100 for block 10 and 150 for block 20 induces the bids 105, 110, . . . , 145 for
blocks 11–19. One would expect an impatient user to specify a relatively short interval of blocks
and a relatively high bid for the first block. A patient user, who favors a cheap price over immediate
inclusion, would presumably opt for a long interval and a low initial bid.

An Ethereum user could simulate the functionality of EIP-2593 by rebroadcasting a transaction
with successively higher gas prices. The goal of EIP-2593 is to automate this process in-protocol,
eliminating the added computational burden of resubmitted transactions.

EIP-2593 increases the number of bidding parameters relative to the status quo—in effect,
adding a rate of increase parameter to the existing gas price parameter. More parameters means
more in-protocol bidding options for users, but they also potentially complicate the task of choosing
a bidding strategy.68 EIP-2593 also locks users into a single type of bidding strategy (with a linear
bid increase), even though a user might be better served by a different type of strategy (e.g., a
more general concave or convex function).

Remark 9.1 (Combining EIP-1559 and EIP-2593) EIP-2593 was initially proposed in part
as an alternative to EIP-1559, as a way to make fee estimation easier for users without introducing
any major changes to the Ethereum protocol. The two proposals are easily combined, however,
by plugging in EIP-2593’s linear bidding strategies to set transaction tips in EIP-1559; the base
fee would evolve independently, according to the usual update rule in (2). Because EIP-1559’s

(e.g., USDT).
66Though if the bulk of transaction fees come from a small number of transactions willing to pay much more than

the base fee (e.g., submitted by front-running bots), such attacks will remain an issue.
67The idea behind this proposal was inspired by Miller and Drexler [42].
68Hasu and Konstantopoulos [31] point out that another possible drawback of supporting richer bidding strategies

is a decrease in privacy, with more clues about a user’s preferences publicly available on-chain.
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tips are necessary primarily in blocks with an excessively low base fee (see Definition 6.7 and
Theorem 6.8), EIP-2593’s additional functionality may be relevant only in the occasional period of
rapidly increasing demand.69

The scope of EIP-2593 is narrower than that of EIP-1559 and it makes much less radical
changes to the status quo. The good news is that the former proposal accordingly carries less risk
than the latter; the bad news is that it offers none of the side benefits listed in Section 9.1. For
the specific objective of easier fee estimation, the arguments currently justifying EIP-1559 appear
stronger and more rigorous than those for EIP-2593. In particular, because EIP-2593 retains the
first-price transaction fee mechanism, there is no hope for “obvious optimal bids” in the sense of
the “typically-UIC” guarantee for the 1559 mechanism (Theorem 6.8).

10 Conclusions

Does EIP-1559 offer an improvement over Ethereum’s current transaction fee mechanism? The
biggest potential benefits of the proposed changes are as advertised: easy fee estimation, in the
form of an “obvious optimal bid” outside of periods of rapidly increasing demand (Theorem 6.8);
lower variance in transaction fees due to increased flexibility in block size (Section 3.2); game-
theoretic robustness to protocol deviations and off-chain agreements, both at the scale of a single
block (Theorems 6.4 and 6.12) and of multiple blocks (Section 7); and reduced inflation due to fee
burning (Section 9.1).

Most of the major risks in implementing EIP-1559 are the same as those for any major change to
the Ethereum protocol: implementation errors; a fork caused by some parties rejecting the changes;
extra complexity at the consensus layer; additional parameters to be tweaked with every network
upgrade; and the spectre of unforeseeable downstream consequences. Additional risks specific to
EIP-1559 include the possibility of a hostile reception by miners (due to lost revenue from burned
transaction fees) and a coordinated response (Sections 7.5–7.6); and a new (if expensive) attack
vector enabled by variable-size blocks (Sections 8.6.5–8.6.6).

Reasonable people will disagree on whether the benefits of EIP-1559 justify the risks in adopting
it. Those who subscribe to a “why fix what isn’t (too badly) broken” philosophy may prefer to
stick with the status quo. For those who believe that consensus-layer innovation should continue
to be a central part of Ethereum’s future, however, the arguments in favor of EIP-1559 are strong.
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